Investigation of a nonequilibrium polariton condensate in cylindrical micropillars in a strong magnetic field

  • A. S. Brichkin
  • S. I. Novikov
  • A. V. Chernenko
  • C. Schneider
  • S. Hoefling
Solids and Liquids
  • 14 Downloads

Abstract

We analyze the photoluminescence of a nonequilibrium polariton condensate in cylindrical micropillars etched on the surface of a high-Q GaAs microcavity in a wide range of detunings in a magnetic field up to 12 T for various levels of nonresonant laser pumping by nanosecond pulses. With such a method of excitation, a considerable effect of the interaction of the reservoir of photoexcited excitons with the condensate on the Zeeman splitting of the polariton condensate levels can be expected, which can lead to a decrease in its value and even to sign reversal. However, the measurements of photoluminescence in a wide range of optical excitation densities show that Zeeman splitting weakly depends on the optical pumping (its variation does not exceed 15% of the splitting in a field of 12 T). The estimation of the exciton density in the reservoir based on these data gives a value lower than 108 cm–2. In addition, a noticeable decrease (by a factor of about 1.8) in the polariton condensation threshold in a magnetic field is detected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. G. Rubo, A. V. Kavokin, and I. A. Shelykh, Phys. Lett. A 358, 227 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Larionov, V. D. Kulakovskii, S. Hoeffling, C. Schneider, L. Worschech, and A. Forchel, Phys. Rev. Lett. 105, 256401 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    P. Walker, T. C. H. Liew, D. Sarkar, M. Durska, A. P. D. Love, M. S. Skolnick, J. S. Roberts, I. A. Shelykh, A. V. Kavokin, and D. N. Krizhanovskii, Phys. Rev. Lett. 106, 257401 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. Fischer, S. Brodbeck, A. V. Chernenko, I. Lederer, A. Rahimi-Iman, M. Amthor, V. D. Kulakovskii, M. Kamp, M. Durnev, A. V. Kavokin, and S. Hoefling, Phys. Rev. Lett. 112, 093902 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    V. D. Kulakovskii, A. V. Larionov, S. Brichkin, C. Schneider, S. Hoefling, M. Kamp, A. Forchel, and N. A. Gippius, in Proceedings of the 20th International Conference on High Magnetic Fields in Semiconductor, HMF-20, Chamonix Mont-Blanc, France, July 22–27, 2012.Google Scholar
  6. 6.
    C. Sturm, D. Solnyshkov, O. Krebs, A. Lemaıtre, I. Sagnes, E. Galopin, A. Amo, G. Malpuech, and J. Bloch, Phys. Rev. B 91, 155130 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Hoefling, Phys. Rev. B 91, 081404(R) (2015).ADSCrossRefGoogle Scholar
  8. 8.
    L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaıtre, G. Malpuech, and J. Bloch, Phys. Rev. Lett. 106, 126401 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    T. A. Fisher, A. M. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, Phys. Rev. B 53, R10469 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    P. Stepnicki, B. Pietka, F. Morier-Genoud, B. Deveaud, and M. Matuszewski, Phys. Rev. B 91, 195302 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Hoefling, Nature (London) 497, 348 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    V. D. Kulakovskii, A. S. Brichkin, S. V. Novikov, C. Schneider, S. Hoefling, M. Kamp, A. Forchel, and N. A. Gippius, Phys. Rev. B 85, 155322 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, Phys. Rev. B 57, 9950 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Clarendon, Oxford, 2006).Google Scholar
  15. 15.
    A. S. Brichkin, S. I. Novikov, A. V. Larionov, V. D. Kulakovskii, M. M. Glazov, C. Schneider, S. Hoefling, M. Kamp, and A. Forchel, Phys. Rev. B 84, 195301 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    R. Zimmerman, K. Kiijmann, W. D. Kraeft, D. Kremp, and G. Ropke, Phys. Status Solidi B 90, 175 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    L. Pitaevskii and S. Stringari, Bose–Einstein Condensation (Clarendon, Oxford, 2003).MATHGoogle Scholar
  18. 18.
    V. D. Kulakovskii, A. V. Larionov, S. I. Novikov, S. Hoefling, Ch. Schneider, and A. Forchel, JETP Lett. 92, 595 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. S. Brichkin
    • 1
  • S. I. Novikov
    • 1
  • A. V. Chernenko
    • 1
  • C. Schneider
    • 2
  • S. Hoefling
    • 2
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Würzburg UniversityWürzburgGermany

Personalised recommendations