Skip to main content
Log in

Electronic excitation energy transfer and nonstationary processes in KH2PO4:Tl crystals

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report the results of our experimental study and numerical simulation of the electronic excitation energy transfer to impurity centers under conditions where nonstationary processes take place in the hydrogen sublattice of potassium dihydrogen phosphate (KH2PO4) single crystals doped with mercury-like Tl+ ions (KDP:Tl). We present the experimental results of our investigation of the decay kinetics of the transient optical absorption (100 ns–50 s) of intrinsic defects in the hydrogen sublattice of KDP:Tl obtained by pulsed absorption spectroscopy and the results of our study of the dynamics of the change in steady-state luminescence intensity with irradiation time (1–5000 s). To explain the transfer of the energy being released during electron recombination involving intrinsic KDP:Tl lattice defects, we formulate a mathematical model for the transfer of this energy to impurity Tl+ luminescence centers. Within the model being developed, we present the systems of differential balance equations describing the nonstationary processes in the electron subsystem and the hydrogen sublattice; provide a technique for calculating the pair correlation functions Y(r, t) of dissimilar defects based on the solution of the Smoluchowski equation for the system of mobile hydrogen sublattice defects; calculate the time-dependent reaction rate constants K(t) for various experimental conditions; and outline the peculiarities and results of the model parametrization based on our experimental data. Based on our investigation, the dramatic and significant effect of a gradual inertial increase by a factor of 50–100 in steady-state luminescence intensity in the 4.5-eV band in KDP:Tl crystals due to the luminescence of mercury-like Tl+ ions has been explained qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Rashkovich, KDP-Family Single Crystals (Adam Hilger, Bristol, Philadelphia, New York, 1991).

    Google Scholar 

  2. V. L. Indenbom and M. A. Chernysheva, Sov. Phys. JETP 5, 575 (1957).

    Google Scholar 

  3. V. I. Bredikhin, V. N. Genkin, A. M. Miller, and L. V. Soustov, Sov. Phys. JETP 48, 888 (1976).

    ADS  Google Scholar 

  4. V. N. Genkin, A. M. Miller, and L. V. Soustov, Sov. Phys. JETP 52, 949 (1980).

    ADS  Google Scholar 

  5. I. V. Shnaidshtein and B. A. Strukov, Phys. Solid State 48, 2142 (2006).

    Article  ADS  Google Scholar 

  6. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, New York, 1999).

    Book  Google Scholar 

  7. E. V. Peshikov, Radiation Effects in Ferroelectrics (Fan, Tashkent, 1986).

    Google Scholar 

  8. E. Diéguez and J. M. Cabrera, J. Phys. D: Appl. Phys. 14, 91 (1981).

    Article  ADS  Google Scholar 

  9. E. Diéguez, J. M. Cabrera, and F. Agulló López, J. Chem. Phys. 81, 3369 (1984).

    Article  ADS  Google Scholar 

  10. I. N. Ogorodnikov, M. Kirm, V. A. Pustovarov, and V. S. Cheremnykh, Opt. Spectrosc. 95, 385 (2003).

    Article  ADS  Google Scholar 

  11. I. N. Ogorodnikov, M. Kirm, and V. A. Pustovarov, Rad. Meas. 42, 746 (2007).

    Article  Google Scholar 

  12. I. Fujita, Phys. Rev. B 49, 6462 (1994).

    Article  ADS  Google Scholar 

  13. F. D. Klement and Ch. B. Lushchik, Zh. Prikl. Spektrosk. 8, 545 (1968).

    Google Scholar 

  14. S. Zazubovich, A. Voloshinovskii, and G. Stryganyuk, Phys. Status Solidi B 233, 238 (2002).

    Article  ADS  Google Scholar 

  15. A. Voloshinovskii, S. Zazubovich, G. Stryganyuk, and I. Pashuk, J. Luminesc. 111, 9 (2005).

    Article  ADS  Google Scholar 

  16. K. Ichimura, T. Fuyuki, T. Kawai, S. Hashimoto, T. Hirai, and N. Ohne, Phys. Status Solidi C 3, 3607 (2006).

    Article  ADS  Google Scholar 

  17. I. N. Ogorodnikov, M. Kirm, V. A. Pustovarov, and V. S. Cheremnykh, Rad. Meas. 38, 331 (2004).

    Article  Google Scholar 

  18. A. P. Voronov, V. I. Salo, V. M. Puzikov, V. F. Tkachenko, and Y. T. Vydai, Crystallogr. Rep. 51, 696 (2006).

    Article  ADS  Google Scholar 

  19. A. P. Voronov, Y. T. Vyday, V. I. Salo, V. M. Puzikov, and S. I. Bondarenko, Rad. Meas. 42, 553 (2007).

    Article  Google Scholar 

  20. I. N. Ogorodnikov, V. A. Pustovarov, V. M. Puzikov, V. I. Salo, and A. P. Voronov, Opt. Mater. 34, 1522 (2012).

    Article  ADS  Google Scholar 

  21. V. I. Salo, V. F. Tkachenko, A. P. Voronov, V. M. Puzikov, and V. A. Tsurikov, Funct. Mater. 12, 658 (2005).

    Google Scholar 

  22. B. P. Gritsenko, V. Yu. Yakovlev, G. D. Lyakh, and Yu. N. Safonov, in Proceedings of the All-Union Conference on The Contemporary State and Development Outlook of High-Speed Photography, Cinematography, and Metrology of Rapidly Occurring Processes (VNIIOFI, Moscow, 1978), p. 61.

    Google Scholar 

  23. I. N. Ogorodnikov, V. Yu. Yakovlev, B. V. Shul’gin, and M. K. Satybaldieva, Phys. Solid State 44, 880 (2002).

    Article  ADS  Google Scholar 

  24. P. Kelly and P. Bräunlich, Phys. Rev. B 1, 1587 (1970).

    Article  ADS  Google Scholar 

  25. J. Q. Grim, Q. Li, K. B. Ucer, R. T. Williams, G. A. Bizarri, and W. W. Moses, MRS Commn. 2, 139 (2012).

    Article  Google Scholar 

  26. E. A. Kotomin and V. N. Kuzovkov, Modern Aspects of Diffusion-Controlled Reactions: Cooperative Phenomena in Bimolecular Processes (Elsevier, North-Holland, Amsterdam, 1996).

    MATH  Google Scholar 

  27. M. S. Kiseleva and I. N. Ogorodnikov, RF State Registration Certificate of Computer Program No. 2011616814 (2011).

  28. A. Smakula, Z. Phys. 59, 603 (1930).

    Article  ADS  Google Scholar 

  29. J.-H. Park, Solid State Commun. 123, 291 (2002).

    Article  ADS  Google Scholar 

  30. I. N. Ogorodnikov and M. S. Kiseleva, Phys. Solid State 54, 273 (2012).

    Article  ADS  Google Scholar 

  31. I. N. Ogorodnikov, M. S. Kiseleva, and V. Y. Yakovlev, Opt. Mater. 34, 2030 (2012).

    Article  ADS  Google Scholar 

  32. I. N. Ogorodnikov and M. S. Kiseleva, J. Exp. Theor. Phys. 115, 154 (2012).

    Article  ADS  Google Scholar 

  33. W. E. Hughes and W. G. Moulton, J. Chem. Phys. 39, 1359 (1963).

    Article  ADS  Google Scholar 

  34. K. Tsuchida, P. Abe, and M. Naito, J. Phys. Soc. Jpn. 35, 806 (1973).

    Article  ADS  Google Scholar 

  35. J. A. McMillan and J. M. Clemens, J. Chem. Phys. 68, 3627 (1978).

    Article  ADS  Google Scholar 

  36. J. W. Wells, E. Budzinski, and H. C. Box, J. Chem. Phys. 85, 6340 (1986).

    Article  ADS  Google Scholar 

  37. K. T. Stevens, N. Y. Garces, L. E. Halliburton, M. Yan, N. P. Zaitseva, J. J. de Yoreo, G. C. Catella, and J. R. Luken, Appl. Phys. Lett. 75, 1503 (1999).

    Article  ADS  Google Scholar 

  38. S. D. Setzler, K. T. Stevens, L. E. Halliburton, M. Yan, N. P. Zaitseva, and J. J. de Yoreo, Phys. Rev. B 57, 2643 (1998).

    Article  ADS  Google Scholar 

  39. L. B. Harris and G. J. Vella, J. Chem. Phys. 58, 4550 (1971).

    Article  ADS  Google Scholar 

  40. A. I. Ryabov, N. S. Stel’makh, G. N. Pirogova, Yu. V. Voronin, and B. I. Zakharkin, Sov. Phys. Solid State 33, 1502 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Ogorodnikov.

Additional information

Original Russian Text © I.N. Ogorodnikov, V.A. Pustovarov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 4, pp. 695–708.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodnikov, I.N., Pustovarov, V.A. Electronic excitation energy transfer and nonstationary processes in KH2PO4:Tl crystals. J. Exp. Theor. Phys. 124, 592–603 (2017). https://doi.org/10.1134/S1063776117030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117030050

Navigation