Kinetic freeze-out spectra of identified particles produced in p–Pb collisions at \(\sqrt {s_{NN} }\) = 5.02 TeV

Nuclei, Particles, Fields, Gravitation, and Astrophysics

Abstract

We study the transverse momentum spectra of identified pions (π + π+), kaons ((K + K+), K0s), protons (p + ) and lambda hyperons (Λ + Λ̅) produced at mid-rapidity (0 < ycm < 0.5) in most central (0‒5)% p–Pb collisions at \(\sqrt {s_{NN} }\) = 5.02 TeV in comparison with a Unified Statistical Thermal Freeze-out Model (USTFM). The measurements for pions are reported upto pT = 3 GeV, the kaons (K + K+) are reported upto pT = 2.5 GeV, K0s is reported upto pT = 7 GeV, and the baryons (protons and lambda hyperons) are reported upto pT = 3.5 GeV. A good agreement is seen between the calculated results and the experimental data points taken from the ALICE experiment. The transverse momentum spectra are found to be flatter for heavy particles than for light particles. Bulk freeze-out properties in terms of kinetic freeze-out temperature and the transverse collective flow velocity are extracted from the fits of the transverse momentum spectra of these hadrons. The effect of resonance decay contributions has also been taken care of.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Muller and J. L. Nagle, Ann. Rev. Nucl. Part. Sci. 56, 93 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    E. Schnedermann, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 48, 2462 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    C. Salgado, J. Alvarez-Muniz, F. Arleo, N. Armesto, M. Botje, et al., J. Phys. G 39, 015010 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    I. Bashir, R. A. Bhat, and S. Uddin, arXiv:1510.05894 [hep-ph].Google Scholar
  5. 5.
    S. Uddin et al., Adv. High Energy Phys., ID 154853 (2015).Google Scholar
  6. 6.
    S. Uddin et al., J. Phys. G 39, 015012 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Uddin et al., Nucl. Phys. A 934, 121 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    I. Bashir et al., Int. J. Mod. Phys. A 30, 1550139 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    I. Bashir et al., J. Exp. Theor. Phys. 121, 206 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    J. D. Bjorken, Phys. Rev. D 27, 140 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    B. Abelev et al. (ALICE Collab.), Phys. Lett. B 728, 25 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Bass et al., Nucl. Phys. A 661, 205 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    A. Adare et al. (PHENIX Collab.), arXiv:1303.1794 (2013).Google Scholar
  15. 15.
    S. Chatrchyan et al. (CMS Collab.), Phys. Lett. B 718, 795 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    B. Abelev et al. (ALICE Collab.), Phys. Lett. B 719, 29 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    G. Aad et al. (ATLAS Collab.), arXiv: 1212.5198Google Scholar
  18. 18.
    U. W. Heinz, CERN-2004-001-D (CERN, 2004).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Deparment of PhysicsIslamic University of Science and TechnologyAwantiporaIndia
  2. 2.Department of PhysicsJamiaMillia IslamiaNew DelhiIndia

Personalised recommendations