Skip to main content
Log in

Comparative study of solute trapping and Gibbs free energy changes at the phase interface during alloy solidification under local nonequilibrium conditions

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V D , where V D is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When VV D , the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishing solute drag energy, i.e. partitionless and “dragless” solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Glicksman, Principles of Solidification (Springer, New York, 2011).

    Book  Google Scholar 

  2. K. A. Jackson, K. M. Beatty, and K. A. Gudgel, J. Cryst. Growth 271, 481 (2004).

    Article  ADS  Google Scholar 

  3. D. Danilov and B. Nestler, Acta Mater. 54, 4659 (2006).

    Article  Google Scholar 

  4. G. Tegze, L. Granasy, G. I. Toth, J. F. Douglas, and T. Puszta, Soft Matter 7, 1789 (2011).

    Article  ADS  Google Scholar 

  5. S. Tang, Y.-M. Yu, J. Wang, J. Li, Z. Wang, Y. Guo, and Y. Zhou, Phys. Rev. E 89, 012405-6 (2014).

    Google Scholar 

  6. A. Bhattacharya, C. S. Upadhyay, and S. Sangal, Metall. Mat. Trans. A 46, 926 (2015).

    Article  Google Scholar 

  7. G. Lebon, D. Jou, and J. Casas-Vazquez, Understanding Non-Equilibrium Thermodynamics (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  8. S. L. Sobolev, Sov. Phys. Usp. 34, 217 (1991).

    Article  ADS  Google Scholar 

  9. S. L. Sobolev, Phys. Usp. 40, 1043 (1997).

    Article  ADS  Google Scholar 

  10. S. L. Sobolev, Mater. Sci. Technol. 31, 1607 (2015).

    Article  Google Scholar 

  11. S. L. Sobolev, Acta Mater. 60, 2711 (2012).

    Article  Google Scholar 

  12. S. L. Sobolev, Mater. Lett. 89, 191 (2012).

    Article  Google Scholar 

  13. S. L. Sobolev, Acta Mater. 93, 256 (2015).

    Article  Google Scholar 

  14. S. L. Sobolev, Phys. Lett. A 376, 3563 (2012).

    Article  ADS  Google Scholar 

  15. S. Li and S. L. Sobolev, J. Cryst. Growth 380, 68 (2013).

    Article  ADS  Google Scholar 

  16. T. Teramoto, A. Saekiand, and F. Yonezawa, J. Phys. Soc. Jpn. 69, 679 (2000).

    Article  ADS  Google Scholar 

  17. P. Stefanovic, M. Haataja, and N. Provatas, Phys. Rev. Lett. 96, 225504-4 (2006).

    Article  Google Scholar 

  18. H. Humadi, J. J. Hoyt, and N. Provatas, Phys. Rev. E 87, 022404-10 (2013).

    Article  Google Scholar 

  19. H. Humadi, J. J. Hoyt, and N. Provatas, Phys. Rev. E 93, 010801(R) (2016).

    Article  ADS  Google Scholar 

  20. H. Humadi, N. Ofori-Opoku, N. Provatas, and J. J. Hoyt, JOM 65, 1103 (2013).

    Article  Google Scholar 

  21. S. Majaniemi and M. Grant, Phys. Rev. B 75, 054301-15 (2007).

    Article  Google Scholar 

  22. S. Li, Z. Gu, D. Li, S. Wu, M. Chen, and Y. Feng, Nonferrous Met. Soc. China 25, 3363 (2015).

    Article  Google Scholar 

  23. H. Wang, F. Liu, W. Yang, Z. Chen, G. Yang, and Y. Zhou, Acta Mater. 56, 746 (2008).

    Article  Google Scholar 

  24. Y. Ruan and F. P. Dai, Intermetallics 25, 80 (2012).

    Article  Google Scholar 

  25. Y. Tan and H. Wang, J. Mater. Sci. 47, 5308 (2012).

    Article  ADS  Google Scholar 

  26. J. C. Jie, Q. C. Zou, H. W. Wang, J. L. Sun, Y. P. Lu, T.M. Wang, and T. J. Li, J. Cryst. Growth 399, 43 (2014).

    Article  ADS  Google Scholar 

  27. H. Wang, F. Liu, H. Zhai, and K. Wang, Acta Mater. 60, 1444 (2012).

    Article  Google Scholar 

  28. X. Yang, Y. Tang, D. Cai, L. Zhang, Y. Du, and S. Zhou, J. Min. Metall., Sect. B: Metall. 52, 77 (2016).

    Article  Google Scholar 

  29. L. Zhang, E. V. Danilova, I. Steinbach, D. Medvedev, and P. K. Galenko, Acta Mater. 61, 4155 (2013).

    Article  Google Scholar 

  30. H. Wang, C. Lai, X. Zhang, W. Kuang, and F. Liu, Mater. Sci. Technol. 31, 1649 (2015).

    Article  Google Scholar 

  31. Y. Zhao, R. Qin, D. Chen, X. Wan, Y. Li, and M. Ma, Steel Res. Int. 86, 1490 (2015).

    Article  Google Scholar 

  32. S. L. Sobolev, Int. J. Thermophys. 17, 1089 (1996).

    Article  ADS  Google Scholar 

  33. S. J. Cook and P. Clancy, Mol. Simul. 5, 99 (1990).

    Article  Google Scholar 

  34. S. J. Cook and P. Clancy, J. Chem. Phys. 99, 2175 (1993).

    Article  ADS  Google Scholar 

  35. P. Yu and P. Clancy, J. Cryst. Growth 149, 45 (1995).

    Article  ADS  Google Scholar 

  36. Y. Yang, H. Humadi, D. Buta, B. B. Laird, D. Sun, J. J. Hoyt, and M. Asta, Phys. Rev. Lett. 107, 025505-4 (2011).

    Google Scholar 

  37. S. Walder, Mater. Sci. Eng. A 229, 156 (1997).

    Article  Google Scholar 

  38. J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, Acta Mater. 48, 4797 (2000).

    Article  Google Scholar 

  39. P. K. Galenko and D. M. Herlach, Phys. Rev. Lett. 96, 150602-4 (2006).

    Article  Google Scholar 

  40. M. J. Aziz and T. Kaplan, Acta Metall. 36, 2335 (1988).

    Article  Google Scholar 

  41. M. Rettenmayr, Int. Mater. Rev. 54, 1 (2009).

    Article  Google Scholar 

  42. I. M. Sokolov, Soft Matter 8, 9043 (2012).

    Article  ADS  Google Scholar 

  43. S. K. Ghosh, A. G. Cherstvy, and R. Metzler, Phys. Chem. Chem. Phys. 17, 1847 (2015).

    Article  Google Scholar 

  44. S. Deville, J. Mater. Res. 28, 2202 (2013).

    Article  ADS  Google Scholar 

  45. D. M. Anderson, J. D. Benson, and A. J. Kearsley, Cryobiology 69, 349 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Sobolev.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 3, pp. 538–549.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, S.L. Comparative study of solute trapping and Gibbs free energy changes at the phase interface during alloy solidification under local nonequilibrium conditions. J. Exp. Theor. Phys. 124, 459–468 (2017). https://doi.org/10.1134/S1063776117020169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117020169

Navigation