Skip to main content

Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring

Abstract

We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing the volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ s and–θ s relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. M. Zharkova and A. S. Sonin, Liquid Crystal Composites (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  2. 2.

    F. Simoni, Nonlinear Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997).

    Book  Google Scholar 

  3. 3.

    M. G. Tomilin and S. M. Pestov, Properties of Liquid Crystal Materials (Politekhnika, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  4. 4.

    Display Systems, Ed. by L. W. MacDonald and A. C. Lowe (Wiley, New York, 1997).

  5. 5.

    V. G. Chigrinov, Liquid Crystal Devices: Physics and Application (Artech House, Boston, 1999).

    Google Scholar 

  6. 6.

    V. Ya. Zyryanov, S. L. Smorgon, and V. F. Shabanov, Mol. Eng. 1, 305 (1992).

    Article  Google Scholar 

  7. 7.

    F. Basile, F. Bloisi, L. Vicari, and F. Simoni, Phys. Rev. E 48, 432 (1993).

    ADS  Article  Google Scholar 

  8. 8.

    V. V. Presnyakov and T. V. Galstian, Mol. Cryst. Liq. Cryst. 413, 435 (2004).

    Article  Google Scholar 

  9. 9.

    V. A. Loiko and A. V. Konkolovich, J. Exp. Theor. Phys. 96, 489 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    V. A. Loiko and A. V. Konkolovich, J. Exp. Theor. Phys. 99, 343 (2004).

    ADS  Article  Google Scholar 

  11. 11.

    V. A. Loiko and A. V. Konkolovich, J. Exp. Theor. Phys. 103, 935 (2006).

    ADS  Article  Google Scholar 

  12. 12.

    P. G. Lisinetskaya, A. V. Konkolovich, and A. V. Loiko, Appl. Opt. 48, 3144 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    A. Khan, I. Shiyanovskaya, T. Schneider, et al., J. SID 15, 9 (2007).

    Google Scholar 

  14. 14.

    G. E. Volovik and O. D. Lavrentovich, Sov. Phys. JETP 58, 1159 (1983).

    Google Scholar 

  15. 15.

    P. S. Drzaic, Liquid Crystal Dispersions (World Sci., Singapore, 1995).

    Book  Google Scholar 

  16. 16.

    J. L. West, J. W. Doane, and S. Zumer, US Patent No. 4685771, Int. Cl. G02F 1/13 (1987).

    Google Scholar 

  17. 17.

    V. K. Freedericksz and V. Zolina, Trans. Faraday Soc. 29, 919 (1933).

    Article  Google Scholar 

  18. 18.

    V. Ya. Zyryanov, M. N. Krakhalev, O. O. Prishchepa, and A. V. Shabanov, JETP Lett. 86, 383 (2007).

    ADS  Article  Google Scholar 

  19. 19.

    E. Dubois-Violette and P. G. de Gennes, J. Phys. Lett. 36, L–255 (1975).

    Article  Google Scholar 

  20. 20.

    L. M. Blinov, E. I. Kats, and A. A. Sonin, Sov. Phys. Usp. 30, 604 (1987).

    ADS  Article  Google Scholar 

  21. 21.

    S. Zumer and J. W. Doane, Phys. Rev. A 34, 3373 (1986).

    ADS  Article  Google Scholar 

  22. 22.

    S. Zumer, Phys. Rev. A 37, 4006 (1988).

    ADS  Article  Google Scholar 

  23. 23.

    D. A. Yakovlev and O. A. Afonin, Opt. Spectrosc. 82, 78 (1997).

    ADS  Google Scholar 

  24. 24.

    V. A. Loiko, P. G. Maksimenko, and A. V. Konkolovich, Opt. Spectrosc. 105, 791 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    V. A. Loiko, A. V. Konkolovich, and A. A. Miskevich, J. Exp. Theor. Phys. 122, 176 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    V. A. Loiko, V. Ya. Zyryanov, A. V. Konkolovich and A. A. Miskevich, Opt. Spectrosc. 120, 143 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    V. A. Loiko, U. Mashke, V. Ya. Zyryanov, A. V. Konkolovich, and A. A. Miskevich, Opt. Spectrosc. 111, 866 (2011).

    Article  Google Scholar 

  28. 28.

    V. A. Loiko, V. Ya. Zyryanov, U. Maschke, et al., J. Quant. Spectrosc. Rad. Transfer 113, 2585 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    V. A. Loiko, V. Ya. Zyryanov, A. V. Konkolovich, et al., Mol. Cryst. Liq. Cryst. 561, 194 (2012).

    Article  Google Scholar 

  30. 30.

    V. A. Loiko and A. V. Konkolovich, J. Phys. D 33, 2201 (2000).

    ADS  Article  Google Scholar 

  31. 31.

    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964; Nauka, Moscow, 1970).

    Google Scholar 

  32. 32.

    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998; Mir, Moscow, 1986).

    Google Scholar 

  33. 33.

    V. I. Iveronova and G. P. Revkevich, Theory of X-ray Scattering (Mosk. Gos. Univ., Moscow, 1978) [in Russian].

    Google Scholar 

  34. 34.

    A. P. Ivanov, V. A. Loiko, and V. P. Dik, Light Propagation in Densely Packed Dispersed Media (Nauka Tekhnika, Minsk, 1988) [in Russian].

    Google Scholar 

  35. 35.

    J. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ., Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  36. 36.

    M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Y. Rosenfeld, Phys. Rev. A 42, 5978 (1990).

    ADS  Article  Google Scholar 

  38. 38.

    K. H. Ding, C. E. Mandt, L. Tsang, and J. A. Kong, J. Electromagn. Waves Appl. 6, 1015 (1992).

    Google Scholar 

  39. 39.

    K. M. Hong, J. Opt. Soc. Am. 70, 821 (1980).

    ADS  Article  Google Scholar 

  40. 40.

    Scattering of Electromagnetic Waves: Numerical Simulations, Ed. by J. Kong (Wiley, New York, 2001).

  41. 41.

    J. A. Lock and Chiu Chin-Lien, Appl. Opt. 33, 4663 (1994).

    ADS  Article  Google Scholar 

  42. 42.

    V. A. Loiko and A. V. Konkolovich, Opt. Spektrosc. 85, 623 (1998).

    Google Scholar 

  43. 43.

    V. A. Loiko, U. Mashke, V. Ya. Zyryanov, et al., Opt. Spektrosc. 110, 116 (2011).

    ADS  Google Scholar 

  44. 44.

    V. A. Loiko, M. N. Krakhalev, A. V. Konkolovich et al., J. Quant. Spectrosc. Radiat. Transfer 178, 263 (2016).

    ADS  Article  Google Scholar 

  45. 45.

    H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981; Inostr. Liter., Moscow, 1961).

    Google Scholar 

  46. 46.

    V. N. Lopatin and N. V. Shepelevich, Opt. Spectrosc. 81, 103 (1996).

    ADS  Google Scholar 

  47. 47.

    G. H. Meeten, Opt. Acta 29, 759 (1982).

    ADS  Article  Google Scholar 

  48. 48.

    R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977; Mir, Moscow, 1981).

    Google Scholar 

  49. 49.

    E. V. Ishchenko and A. L. Sokolov, Polarization Optics (Mosk. Energet. Inst., Moscow, 2005) [in Russian].

    Google Scholar 

  50. 50.

    L. M. Blinov, Structure and Properties of Liquid Crystals (Springer, New York, 2011).

    Book  Google Scholar 

  51. 51.

    O. O. Prischepa, A. V. Shabanov, and V. Ya. Zyryanov, JETP Lett. 79, 257 (2004).

    ADS  Article  Google Scholar 

  52. 52.

    O. O. Prishchepa, A. V. Shabanov, and V. Ya. Zyryanov, Phys. Rev. E 72, 031712 (2005).

    ADS  Article  Google Scholar 

  53. 53.

    V. Ya. Zyryanov, M. N. Krakhalev, and O. O. Prishchepa, Mol. Cryst. Liq. Cryst. 489, 273 (2008).

    Article  Google Scholar 

  54. 54.

    V. Ya. Zyryanov, M. N. Krakhalev, O. O. Prishchepa, and A. V. Shabanov, JETP Lett. 88, 597 (2008).

    ADS  Article  Google Scholar 

  55. 55.

    A. Walther and A. Muller, Soft Matter 4, 663 (2008).

    ADS  Article  Google Scholar 

  56. 56.

    A. Perro, S. Reculusa, S. Ravaine, et al., J. Mater. Chem. 15, 3745 (2005).

    Article  Google Scholar 

  57. 57.

    V. A. Loiko, U. Mashke, V. Ya. Zyryanov, A. V. Konkolovich, and A. A. Misckevich, J. Exp. Theor. Phys. 107, 692 (2008).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Loiko.

Additional information

Original Russian Text © V.A. Loiko, A.V. Konkolovich, V.Ya. Zyryanov, A.A. Miskevich, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 3, pp. 457–475.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loiko, V.A., Konkolovich, A.V., Zyryanov, V.Y. et al. Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring. J. Exp. Theor. Phys. 124, 388–405 (2017). https://doi.org/10.1134/S1063776117020133

Download citation