Skip to main content
Log in

Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a 0l P (where l P is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n F ) to energy density ε(n F ) dependent on the number density of fermions n F . As the early Universe expands, the dimensionless quantity ν(n F ) = P(n F )/ε(n F ) decreases with decreasing n F from its maximum value νmax = 1 for n F → ∞ to zero for n F → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n F )–ε(n F )–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R c =–μ2/ξ and radius a c a 0. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G N .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Linde, Phys. Lett. B 108, 389 (1982).

    Article  ADS  Google Scholar 

  2. A. D. Linde, Phys. Lett. B 129, 177 (1983).

    Article  ADS  Google Scholar 

  3. A. D. Linde, JETP Lett. 38, 176 (1983).

    ADS  Google Scholar 

  4. A. Linde, Particle Physics and Inflationary Cosmology, Contemporary Concepts in Physics, Vol. 5 (Harwood Academic, Chur, 1990; Nauka, Moscow, 1990).

    Book  Google Scholar 

  5. P. W. Higgs, Phys. Lett. 12, 132 (1964).

    Article  ADS  Google Scholar 

  6. P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  7. E. A. Pashitskii and V. I. Pentegov, J. Exp. Theor. Phys. 122, 52 (2016).

    Article  ADS  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980).

    Google Scholar 

  9. Ya. B. Zel’dovich, Sov. Phys. JETP 14, 1143 (1961).

    Google Scholar 

  10. L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. D 56, 3258 (1997).

    Article  ADS  Google Scholar 

  11. G. Gamov, Phys. Rev. 70, 572 (1946).

    ADS  Google Scholar 

  12. J. Schwinger, Particles, Sources, and Fields (Westview, New York, 1998; Mir, Moscow, 1973).

    MATH  Google Scholar 

  13. S. Weinberg, The Quantum Theory of Fields (Cambridge Univ., Cambridge, 2000; Fizmatlit, Moscow, 2003).

    Google Scholar 

  14. I. V. Krive, A. D. Linde, and E. M. Chudnovskii, Sov. Phys. JETP 44, 435 (1976).

    ADS  Google Scholar 

  15. A. Linde, Phys. Rev. D 49, 748 (1994).

    Article  ADS  Google Scholar 

  16. F. L. Bezrukov and M. E. Shaposhnikov, Phys. Lett. B 659, 703 (2008).

    Article  ADS  Google Scholar 

  17. F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  18. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).

    Article  ADS  Google Scholar 

  19. D. A. Kirzhnits, JETP Lett. 15, 529 (1972).

    ADS  Google Scholar 

  20. D. A. Kirzhnits and A. D. Linde, Sov. Phys. JETP 40, 628 (1974).

    ADS  Google Scholar 

  21. J. Maldacena, Adv. Theor. Mat. Phys. 2, 331 (1980).

    Google Scholar 

  22. O. Aharoni, S. Gubser, J. Maldacena, et al., Phys. Rep. 323, 183 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  23. O. Aharoni, O. Bergman, D. L. Jafferis, et al., High Energy Phys. 10, 91 (2008).

    Article  ADS  Google Scholar 

  24. A. Einstein, Sitzungber. Preuss. Akad. Wiss. 1, 688 (1916).

    Google Scholar 

  25. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  Google Scholar 

  26. S. H. Dong, Wave Equations in Higher Dimensions (Springer, Berlin, 2011).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Pashitskii.

Additional information

Original Russian Text © E.A. Pashitskii, V.I. Pentegov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 3, pp. 508–522.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashitskii, E.A., Pentegov, V.I. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas. J. Exp. Theor. Phys. 124, 433–445 (2017). https://doi.org/10.1134/S1063776117020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117020078

Navigation