Skip to main content
Log in

Quasi-optical simulation of the electron cyclotron plasma heating in a mirror magnetic trap

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The resonance microwave plasma heating in a large-scale open magnetic trap is simulated taking into account all the basic wave effects during the propagation of short-wavelength wave beams (diffraction, dispersion, and aberration) within the framework of the consistent quasi-optical approximation of Maxwell’s equations. The quasi-optical method is generalized to the case of inhomogeneous media with absorption dispersion, a new form of the quasi-optical equation is obtained, the efficient method for numerical integration is found, and simulation results are verified on the GDT facility (Novosibirsk).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Zhiltsov et al., Plasma Phys. Rep. 20, 242 (1994).

    ADS  Google Scholar 

  2. S. V. Golubev, S. V. Razin, A. V. Vodopyanov, and V. G. Zorin, Trans. Fusion Technol. 35 (1T), 288 (1999).

    Google Scholar 

  3. A. V. Vodopyanov, S. V. Golubev, V. G. Zorin, A. Yu. Kryachko, A. Ya. Lopatin, V. I. Luchin, S. V. Razin, and A. N. Smirnov, Tech. Phys. Lett. 26, 1075 (2000).

    Article  ADS  Google Scholar 

  4. S. V. Golubev, S. V. Razin, V. E. Semenov, A. N. Smirnov, A. V. Vodopyanov, and V. G. Zorin, Rev. Sci. Instrum. 71, 669 (2000).

    Article  ADS  Google Scholar 

  5. T. Thuillier, T. Lamy, P. Sortais, P. Suominen, O. Tarvainen, and H. Koivisto, Rev. Sci. Instrum. 77, 03A323 (2006).

    Article  Google Scholar 

  6. L. Latrasse, M. Marie-Jeanne, T. Lamy, T. Thuillier, J. Giraud, C. Fourel, C. Trophime, F. Debray, P. Sala, and J. Dumas, Rev. Sci. Instrum. 81, 02A324 (2010).

    Article  Google Scholar 

  7. T. Cho, V. P. Pastukhov, W. Horton, T. Numakura, M. Hirata, J. Kohagura, N. V. Chudin, and J. Pratt, Phys. Plasmas 15, 056120 (2008).

    Article  ADS  Google Scholar 

  8. T. Tamano, Phys. Plasmas 2, 2321 (1995).

    Article  ADS  Google Scholar 

  9. T. Saito, K. Ishii, A. Itakura, et al., J. Plasma Fusion Res. 81, 288 (2005).

    Article  ADS  Google Scholar 

  10. T. C. Simonen and R. Horton, Nucl. Fusion 29, 1373 (1989).

    Article  Google Scholar 

  11. P. A. Bagryansky, A. G. Shalashov, E. D. Gospodchikov, et al., Phys. Rev. Lett. 114, 205001 (2015).

    Article  ADS  Google Scholar 

  12. P. A. Bagryansky, Yu. V. Kovalenko, V. Ya. Savkin, A. L. Solomakhin, and D. V. Yakovlev, Nucl. Fusion 54, 082001 (2014).

    Article  ADS  Google Scholar 

  13. P. A. Bagryansky, A. V. Anikeev, G. G. Denisov, E. D. Gospodchikov, et al., Nucl. Fusion 55, 053009 (2015).

    Article  ADS  Google Scholar 

  14. P. A. Bagryansky, E. D. Gospodchikov, Yu. V. Kovalenko, A. A. Lizunov, et al., Fusion Sci. Technol. 68, 87 (2015).

    Article  Google Scholar 

  15. T. C. Simonen, J. Fusion Energy 35, 63 (2016).

    Article  Google Scholar 

  16. A. Shalashov, E. Gospodchikov, O. Smolyakova, P. Bagryansky, V. Malygin, and M. Thumm, Phys. Plasmas 19, 052503 (2012).

    Article  ADS  Google Scholar 

  17. A. G. Shalashov, E. D. Gospodchikov, O. B. Smolyakova, P. A. Bagryansky, V. I. Malygin, and M. Thumm, Probl. Atom. Sci. Technol., Ser.: Plasma Phys., No. 6, 49 (2012).

    Google Scholar 

  18. P. A. Bagryansky, S. P. Demin, E. D. Gospodchikov, Yu. V. Kovalenko, V. I. Malygin, S. V. Murakhtin, V.Ya. Savkin, A. G. Shalashov, O. B. Smolyakov, A. L. Solomakhin, M. Thumm, and D. V. Yakovlev, Fusion Sci. Technol. 63 (1T), 40 (2013).

    Google Scholar 

  19. A. A. Balakin, Radiophys. Quantum. Electron. 55, 502 (2012).

    Article  ADS  Google Scholar 

  20. A. A. Balakin, M. A. Balakina, A. I. Smirnov, and G. V. Permitin, Plasma Phys. Rep. 33, 302 (2007).

    Article  ADS  Google Scholar 

  21. A. A. Balakin, M. A. Balakina, and E. Westerhof, Nucl. Fusion 48, 065003 (2008).

    Article  ADS  Google Scholar 

  22. N. Bertelli, A. A. Balakin, E. Westerhof, and M. N. Buyanova, Nucl. Fusion 50, 115008 (2010).

    Article  ADS  Google Scholar 

  23. D. V. Yakovlev, A. G. Shalashov, P. A. Bagryansky, E. D. Gospodchikov, V. Ya. Savkin, and A. L. Solomakhin, arXiv:1607.01051 [physics. plasm-ph], Nucl. Fusion (2016, in press).

    Google Scholar 

  24. B. W. Stallard, Y. Matsuda, and W. M. Nevins, Nucl. Fusion 23, 213 (1983).

    Article  Google Scholar 

  25. E. D. Gospodchikov and E. V. Suvorov, Radiophys. Quantum Electron. 48, 641 (2005).

    Article  Google Scholar 

  26. A. A. Balakin, Radiophys. Quantum. Electron. 55, 472 (2012).

    Article  ADS  Google Scholar 

  27. A. A. Balakin, M. A. Balakina, A. I. Smirnov, and G. V. Permitin, J. Phys. D: Appl. Phys. 40, 4285 (2007).

    Article  ADS  Google Scholar 

  28. A. A. Balakin, Radiophys. Quantum. Electron. 55, 556 (2012).

    Article  ADS  Google Scholar 

  29. O. Maj, A. A. Balakin, and E. Poli, Plasma Phys. Control. Fusion 52, 085006 (2010).

    Article  ADS  Google Scholar 

  30. G. V. Pereverzev, Rev. Plasma Phys. 19, 1 (1996).

    Google Scholar 

  31. G. V. Pereverzev, Phys. Plasmas 5, 3529 (1998).

    Article  ADS  Google Scholar 

  32. A. A. Balakin and E. D. Gospodchikov, J. Phys. B: At., Mol. Opt. Phys. 48, 215701 (2015).

    Article  ADS  Google Scholar 

  33. G. M. Fraiman, E. M. Sher, A. D. Yunakovsky, and W. Laedke, Physica D 87, 325 (1995).

    Article  ADS  Google Scholar 

  34. A. A. Samarskii, Introduction to Numerical Methods (Lan’, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  35. A. A. Balakin, M. A. Balakina, A. I. Smirnov, and G. V. Permitin, Plasma Phys. Rep. 34, 486 (2008).

    Article  ADS  Google Scholar 

  36. A. A. Balakin, M. A. Balakina, and A. G. Shalashov, Plasma Phys. Rep. 33, 659 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Shalashov.

Additional information

Original Russian Text © A.G. Shalashov, A.A. Balakin, T.A. Khusainov, E.D. Gospodchikov, A.L. Solomakhin, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 2, pp. 379–395.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalashov, A.G., Balakin, A.A., Khusainov, T.A. et al. Quasi-optical simulation of the electron cyclotron plasma heating in a mirror magnetic trap. J. Exp. Theor. Phys. 124, 325–340 (2017). https://doi.org/10.1134/S1063776117010162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117010162

Navigation