Journal of Experimental and Theoretical Physics

, Volume 124, Issue 2, pp 265–274

Investigation on the formation of lonsdaleite from graphite

Solids and Liquids

DOI: 10.1134/S1063776117010125

Cite this article as:
Greshnyakov, V.A. & Belenkov, E.A. J. Exp. Theor. Phys. (2017) 124: 265. doi:10.1134/S1063776117010125
  • 39 Downloads

Abstract

Structural stability and the possible pathways to experimental formation of lonsdaleite—a hexagonal 2H polytype of diamond—have been studied in the framework of the density functional theory (DFT). It is established that the structural transformation of orthorhombic Cmmm graphite to 2H polytype of diamond must take place at a pressure of 61 GPa, while the formation of lonsdaleite from hexagonal P6/mmm graphite must take place at 56 GPa. The minimum potential barrier height separating the 2H polytype state from graphite is only 0.003 eV/atom smaller than that for the cubic diamond. The high potential barrier is indicative of the possibility of stable existence of the hexagonal diamond under normal conditions. In this work, we have also analyzed the X-ray diffraction and electron-microscopic data available for nanodiamonds found in meteorite impact craters in search for the presence of hexagonal diamond. Results of this analysis showed that pure 3C and 2H polytypes are not contained in the carbon materials of impact origin, the structure of nanocrystals found representing diamonds with randomly packed layers. The term “lonsdaleite,” used to denote carbon materials found in meteorite impact craters and diamond crystals with 2H polytype structure, is rather ambiguous, since no pure hexagonal diamond has been identified in carbon phases found at meteorite fall sites.

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations