Skip to main content
Log in

NMR study of the paramagnetic state of low-dimensional magnets LiCu2O2 and NaCu2O2

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A comprehensive NMR study of the magnetic properties of single crystal LiCu2O2 (LCO) and NaCu2O2 (NCO) is carried out in the paramagnetic region of the compounds for various orientations of single crystals in an external magnetic field. The values of the electric-field gradient (EFG) tensor, as well as the dipole and transferred hyperfine magnetic fields for 63,65Cu, 7Li, and 23Na nuclei are determined. The results are compared with the data obtained in previous NMR studies of the magnetically ordered state of LCO/NCO cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Vorotynov, A. I. Pankrats, G. A. Petrakovskii, et al., J. Exp. Theor. Phys. 86, 1020 (1998).

    Article  ADS  Google Scholar 

  2. A. Maljuka, A. B. Kulakov, M. Sofin, et al., J. Cryst. Growth 263, 338 (2004).

    Article  ADS  Google Scholar 

  3. A. A. Gippius, E. N. Morozova, A. S. Moskvin, et al., Phys. Rev. B 70, 020406 (2004).

    Article  ADS  Google Scholar 

  4. M. Horvatirc, C. Berthier, F. Tedoldi, et al., Progr. Theor. Phys. Suppl. 159, 106 (2005).

    Article  ADS  Google Scholar 

  5. S.-L. Drechsler, J. Richter, A. A. Gippius, et al., Europhys. Lett. 73, 83 (2006).

    Article  ADS  Google Scholar 

  6. A. A. Gippius, A. S. Moskvin, and S.-L. Drechsler, Phys. Rev. B 77, 180403(R) (2008).

    Google Scholar 

  7. L. E. Svistov, L. A. Prozorova, A. M. Farutin, A. A. Gippius, K. S. Okhotnikov, A. A. Bush, K. E. Kamentsev, and E. A. Tishchenko, J. Exp. Theor. Phys. 108, 1000 (2009).

    Article  ADS  Google Scholar 

  8. Y. Kobayashi, K. Sato, Y. Yasui, et al., J. Phys. Soc. Jpn. 78, 084721 (2009).

    Article  ADS  Google Scholar 

  9. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. L. Buzlukov, S. V. Verkhovskii, A. Yu. Yakubovskii, and K. Kumagai, JETP Lett. 92, 527 (2010).

    Article  ADS  Google Scholar 

  10. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, A. Yu. Yakubovskii, E. A. Tishchenko, and A. A. Bush, J. Exp. Theor. Phys. 115, 666 (2012).

    Article  ADS  Google Scholar 

  11. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, A. L. Buzlukov, I. Yu. Arapova, Y. Furukawa, A. Yu. Yakubovskii, and A. A. Bush, J. Exp. Theor. Phys. 119, 870 (2014).

    Article  ADS  Google Scholar 

  12. S. Zvyagin, G. Cao, Y. Xin, et al., Phys. Rev. B 66, 064424 (2002).

    Article  ADS  Google Scholar 

  13. B. Roessli, U. Staub, A. Amato, et al., Physica B 296, 306 (2001).

    Article  ADS  Google Scholar 

  14. T. Masuda, A. Zheludev, A. Bush, et al., Phys. Rev. Lett. 92, 177201 (2004).

    Article  ADS  Google Scholar 

  15. L. Capogna, M. Mayr, P. Horsch, et al., Phys. Rev. B 71, 140402(R) (2005).

    Google Scholar 

  16. Ph. Leininger, M. Rahlenbeck, M. Raichle, et al., Phys. Rev. B 81, 085111 (2010).

    Article  ADS  Google Scholar 

  17. L. Capogna, M. Reehuis, A. Maljuk, et al., Phys. Rev. B 82, 014407 (2010).

    Article  ADS  Google Scholar 

  18. A. A. Bush, V. N. Glazkov, M. Hagiwara, et al., Phys. Rev. B 85, 054421 (2012).

    Article  ADS  Google Scholar 

  19. A. A. Bush, K. E. Kamentsev, E. A. Tishchenko, and V.M. Cherepanov, Inorg. Mater. 44, 628 (2008).

    Article  Google Scholar 

  20. R. Berger, P. Önnerud, and R. Tellgren, J. Alloys Compd. 184, 315 (1992).

    Article  Google Scholar 

  21. R. B. Creel and D. A. Drabold, J. Mol. Struct. 111, 85 (1983).

    Article  ADS  Google Scholar 

  22. R. B. Creel, S. L. Segel, R. J. Schoenberger, et al., J. Chem. Phys. 60, 2310 (1974).

    Article  ADS  Google Scholar 

  23. S. J. Hibble, J. Kobler, and A. Simon, J. Solid State Chem. 88, 534 (1990).

    Article  ADS  Google Scholar 

  24. A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. A 134, 650 (1964).

    Article  ADS  Google Scholar 

  25. C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1989).

    Google Scholar 

  26. J. A. Osborn, Phys. Rev. 67, 351 (1945).

    Article  ADS  Google Scholar 

  27. G. C. Carter, L. N. Bennett, and D. J. Kahan, Prog. Mater. Sci. 20, 11 (1977).

    Google Scholar 

  28. F. Mila and T. M. Rice, Physica C 157, 561 (1989).

    Article  ADS  Google Scholar 

  29. Hyperfine Interactions, Ed. by A. Freeman and R. B. Frankel (Academic, New York, 1967).

  30. N. M. Plakida, High-Temperature Superconductors (Mezhdun. Programma Obrazov., Moscow, 1996; Springer, Berlin, 1995).

    Google Scholar 

  31. C. L. Chen, K. W. Yeh, D. J. Huang, et al., Phys. Rev. B 78, 214105 (2008).

    Article  ADS  Google Scholar 

  32. E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro and Antiferromagnetics (Nauka, Moscow, 1969; Wiley, New York, 1972).

    Google Scholar 

  33. J. S. M. Harvey, L. Evans, and H. Lew, Canad. J. Phys. 50, 1719 (1972).

    Article  ADS  Google Scholar 

  34. R. E. Walstedt, Springer Tracts Mod. Phys. 228 (2008).

    Google Scholar 

  35. D. A. Zatsepin, V. R. Galakhov, M. A. Korotin, et al., Phys. Rev. B 57, 4377 (1998).

    Article  ADS  Google Scholar 

  36. V. V. Mazurenko, S. L. Skornyakov, A. V. Kozhevnikov, et al., Phys. Rev. B 75, 224408 (2007).

    Article  ADS  Google Scholar 

  37. Y. Matiks, A. N. Yaresko, K. Myung-Whun, et al., Phys. Rev. B 84, 245116 (2011).

    Article  ADS  Google Scholar 

  38. H. Alloul, A. Mahajan, H. Casalta, and O. Klein, Phys. Rev. Lett. 70, 1171 (1993).

    Article  ADS  Google Scholar 

  39. H. C. Hsu, H. L. Liu, and F. C. Chou, Phys. Rev. B 78, 212401 (2008).

    Article  ADS  Google Scholar 

  40. K. W. Yeh, T. W. Huang, C. T. Ke, et al., J. Appl. Phys. 108, 083919 (2010).

    Article  ADS  Google Scholar 

  41. A. S. Moskvin, Y. D. Panov, and S.-L. Drechsler, Phys. Rev. B 79, 104112 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Sadykov.

Additional information

Original Russian Text © A.F. Sadykov, Yu.V. Piskunov, A.P. Gerashchenko, V.V. Ogloblichev, A.G. Smol’nikov, S.V. Verkhovskii, I.Yu. Arapova, Z.N. Volkova, K.N. Mikhalev, A.A. Bush, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 2, pp. 335–345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, A.F., Piskunov, Y.V., Gerashchenko, A.P. et al. NMR study of the paramagnetic state of low-dimensional magnets LiCu2O2 and NaCu2O2 . J. Exp. Theor. Phys. 124, 286–294 (2017). https://doi.org/10.1134/S1063776117010071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117010071

Navigation