Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

Atoms, Molecules, Optics
  • 26 Downloads

Abstract

The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nonlinearities in Periodic Structures and Metamaterials, Collection of Articles, Ed. by Yu. S. Kivshar and N. N. Rozanov (Fizmatlit, Moscow, 2014) [in Russian].Google Scholar
  2. 2.
    O. M. Braun and Yu. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer, Berlin, 2004; Fizmatlit, Moscow, 2008).MATHGoogle Scholar
  3. 3.
    T. X. Tran, D. C. Duong, and F. Biancalana, Phys. Rev. A 89, 013826 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    S. Minardi, F. Eilenberger, Y. V. Kartashov, et al., Phys. Rev. Lett. 105, 263901 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    S. K. Turitsyn, A. M. Rubenchik, M. P. Fedoruk, and E. Tkachenko, Phys. Rev. A 86, 031804(R) (2012); A.M. Rubenchik, I. S. Chekhovskoy, M. P. Fedoruk, et al., Opt. Lett. 40, 721 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    A. B. Aceves, G. G. Luther, C. de Angelis, et al., Phys. Rev. Lett. 75, 73 (1995); T. X. Tran, D. C. Duong, and F. Biancalana, Phys. Rev. A 90, 023857 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    G. Mourou, T. Tajima, M. N. Quinnb, et al., Nucl. Instrum. Methods Phys. Res. A 740, 17 (2014); G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, Nat. Photon. 7, 258 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, CA, 2003; Fizmatgiz, Moscow, 2005).Google Scholar
  9. 9.
    A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, Oxford, 2003; Fizmatlit, Moscow, 2007).Google Scholar
  10. 10.
    H. S. Eisenberg, R. Morandotti, Y. Silberberg, et al., J. Opt. Soc. Am. B 19, 2938 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    L. N. Pyatnitskii, Wave Bessel Beams (Fizmatlit, Moscow, 2012) [in Russian].Google Scholar
  12. 12.
    V. V. Kotler and A. A. Kovalev, Vortex Laser Beams (Nov. Tekhnika, Samara, 2012) [in Russian].Google Scholar
  13. 13.
    S. N. Vlasov and V. I. Talanov, Wave Self Focusing (Inst. Prikl. Fiz. RAN, Nizh. Novgorod, 1997) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. A. Balakin
    • 1
  • V. A. Mironov
    • 1
  • S. A. Skobelev
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations