Journal of Experimental and Theoretical Physics

, Volume 124, Issue 1, pp 114–130 | Cite as

Magnetism in structures with ferromagnetic and superconducting layers

  • V. D. Zhaketov
  • Yu. V. Nikitenko
  • F. Radu
  • A. V. Petrenko
  • A. Csik
  • M. M. Borisov
  • E. Kh. Mukhamedzhanov
  • V. L. Aksenov
Order, Disorder, and Phase Transition in Condensed System


The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe1–x V x /V/Fe1–x V x /Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson and H. Suhl, Phys. Rev. 116, 898 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    A. I. Buzdin and L. N. Bulaevski, Sov. Phys. JETP 94, 256 (1988).Google Scholar
  3. 3.
    F. S. Bergeret, K. B. Efetov, and A. I. Larkin, Phys. Rev. B 62, 11872 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Garifullin, D. A. Tikhonov, N. N. Garif’yanov, M. Z. Fattakhov, K. Theis-Brohl, K. Westerholt, and H. Zabel, Appl. Magn. Reson. 22, 439 (2002).CrossRefGoogle Scholar
  6. 6.
    V. L. Aksenov and Yu. V. Nikitenko, Crystallogr. Rep. 52, 374 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. V. Nikitenko and V. G. Syromyatnikov, Polarized Neutron Reflectometry (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  8. 8.
    V. L. Aksenov and Yu. V. Nikitenko, Physica B 297, 101 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. V. Nikitenko, Phys. Part. Nucl. 40, 890 (2009).CrossRefGoogle Scholar
  10. 10.
    V. L. Aksenov, Yu. N. Khaidukov, and Yu. V. Nikitenko, J. Phys.: Conf. Ser. 211, 012022 (2010).Google Scholar
  11. 11.
    V. Lauter-Pasyuk et al., Phys. Rev. Lett. 89, 167203 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    V. L. Aksenov, Yu. V. Nikitenko, Yu. N. Khaidukov, S. N. Vdovichev, M. M. Borisov, A. N. Morkovin, and E. Kh. Mukhamedzhanov, J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 3, 495 (2009).CrossRefGoogle Scholar
  13. 13.
    Yu. V. Nikitenko, Yu. N. Khaidukov, F. Radu, et al., Soobshch. JINR P14-2014-60 (Joint Inst. Nucl. Res., Dubna, 2014).Google Scholar
  14. 14.
    Superconductivity in Ternary Compounds II, Topics in Current Physics, Ed. by M. B. Maple and Ø. Fisher (Berlin, Springer-Verlag, 1982).Google Scholar
  15. 15.
    L. N. Bulaevskii, A. I. Buzdin, M. L. Kulic, and S. V. Panjukov, Adv. Phys. 34, 175 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    J. Aarts, J. M. E. Geers, E. Bruck, A. A. Golubov, and R. Coehoorn, Phys. Rev. B 56, 2779 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    M. N. Baich, J. M. Broto, A. Fert, F. Nguyen van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    S. S. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    F. Stobiecki, T. Stobiecki, B. Ocker, et al., Acta Phys. Polon. 97, 523 (2000).CrossRefGoogle Scholar
  20. 20.
    K. Vad, A. Csik, and G. A. Langer, Spectrosc. Eur. 21, 13 (2009).Google Scholar
  21. 21.
    S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971) [in Russian].Google Scholar
  22. 22.
    F. L. Shapiro, Neutron Researches (Nauka, Moscow, 1976) [in Russian].Google Scholar
  23. 23.
    V. A. Hamad and J. M. Khalifeh, Surf. Sci. 470, 149 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    M. M. Schwickert, R. Coehoorn, M. A. Tomaz, et al., Phys. Rev. B 57, 13681 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    R. Prozorov, Y. Yeshurun, T. Prozorov, and A. Gedanken, Phys. Rev. B 59, 6956 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    O. Iglesias and A. Labarta, J. Appl. Phys. 91, 4409 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).ADSCrossRefGoogle Scholar
  28. 28.
    M. R. Beasley, R. Labusch, and W. W. Webb, Phys. Rev. 181, 682 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • V. D. Zhaketov
    • 1
  • Yu. V. Nikitenko
    • 1
  • F. Radu
    • 2
  • A. V. Petrenko
    • 1
  • A. Csik
    • 3
  • M. M. Borisov
    • 4
  • E. Kh. Mukhamedzhanov
    • 4
  • V. L. Aksenov
    • 5
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.Helmholtz-Zentrum Berlin für Materialen un EnergieBerlinGermany
  3. 3.MTA Atomki, Institute for Nuclear ResearchDebrecenHungary
  4. 4.Russian Research Centre Kurchatov InstituteMoscowRussia
  5. 5.Konstantinov St. Petersburg Nuclear Physics InstituteRussian Research Centre Kurchatov InstituteGatchina, Leningradskaya oblastRussia

Personalised recommendations