Skip to main content
Log in

Comparison between Si/SiO2 and InP/Al2O3 based MOSFETs

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Electron transport properties of InP-based MOSFET as a new channel material with Al2O3 as a high-k dielectric oxide layer in comparison with Si-based MOSFET are studied by the ensemble Monte Carlo simulation method in which the conduction band valleys in InP are based on three valley models with consideration of quantum effects (effective potential approach). I d V d characteristics for Si-based MOSFET are in good agreement with theoretical and experimental results. Our results show that I d of InP-based MOSFET is about 2 times that of Si-based MOSFET. We simulated the diagrams of longitudinal and transverse electric fields, conduction band edge, average electron velocity, and average electron energy for Si-based MOSFET and compared the results with those for InP-based MOSFET. Our results, as was expected, show that the transverse electric field, the conduction band edge, the electron velocity, and the electron energy in a channel in the InP-based MOSFET are greater than those for Si-based MOSFET. But the longitudinal electric field behaves differently at different points of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mori, Y. Azuma, H. Tsuchiya, and T. Miyoshi, IEEE Trans. Nanotechnol. 7, 237 (2008).

    Article  ADS  Google Scholar 

  2. Min Xu, Jiangjiang J. Gu, Chen Wang, D. M. Zhernokletov, R. M. Wallace, and Peide D. Ye, J. Appl. Phys. 113, 013711 (2013).

    Article  ADS  Google Scholar 

  3. Ming Shi, J. Saint-Martin, A. Bournel, H. Maher, M. Renvoise, and Ph. Dollfus, J. Nanosci. Nanotechnol. 10, 7015 (2010).

    Article  Google Scholar 

  4. H. Arabshahi, M. Rezaee Rokn-Abadi, F. Badieian, and M. R. Khalvati, Mod. Phys. Lett. B 24, 549 (2010).

    Article  ADS  Google Scholar 

  5. H. Arabshahi, M. R. Khalvati, and M. Rezaee Rokn-Abadi, Mod. Phys. Lett. B 22, 1695 (2008).

    Article  ADS  Google Scholar 

  6. D. C. Cameron, L. D. Irving, G. R. Jones, and J. Woodward, Thin Solid Films 91, 339 (1982).

    Article  ADS  Google Scholar 

  7. C. Moglestue, Monte Carlo Simulation of Semiconductor Devices (Chapman and Hall, London, 1993).

    Book  MATH  Google Scholar 

  8. F. Badieian Baghsiyahi, M. Rezaee Roknabadi, and H. Arabshahi, Physica E 47, 252 (2013).

    Article  ADS  Google Scholar 

  9. F. Babarada, in Semiconductor Technologies, Ed. by J. Grym (InTechOpen, Croatia, 2010).

  10. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, virtual netLibrary Edition (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  11. N. Newman, T. Kendelewicz, and W. Spicer, Appl. Phys. Lett. 46, 1176 (1985).

    Article  ADS  Google Scholar 

  12. T. Izuka and M. Fukuma, Solid State Electron. 3, 27 (1990).

    Article  ADS  Google Scholar 

  13. P. D. Ye et al., IEEE Electron Dev. Lett. 24, 209 (2003).

    Article  ADS  Google Scholar 

  14. Y. Q. Wu, Y. Xuan, T. Shen, P. D. Ye, Z. Cheng, and A. Lochtefeld, Appl. Phys. Lett. 91, 022108 (2007).

    Article  ADS  Google Scholar 

  15. U. K. Mishra and J. Singh, Semiconductor Device Physics and Design (Springer, Netherlands, 2008).

    Google Scholar 

  16. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H. J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 84, 434 (2004).

    Article  ADS  Google Scholar 

  17. H. C. Lin, W. E. Wang, G. Brammertz, M. Meuris, and M. Heyns, Microelectron. Eng. 86, 1554 (2009).

    Article  Google Scholar 

  18. Y. Xuan, P. D. Ye, and I. Shen, Appl. Phys. Lett. 91, 232107 (2007).

    Article  ADS  Google Scholar 

  19. J. J. Gu, O. Koybasi, Y. Q. Wu, and P. D. Ye, Appl. Phys. Lett. 99, 112113 (2011).

    Article  ADS  Google Scholar 

  20. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005).

    Article  ADS  Google Scholar 

  21. M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, Appl. Phys. Lett. 86, 152904 (2005).

    Article  ADS  Google Scholar 

  22. M. V. Fischetti and S. E. Laux, IEEE Trans. Electron Dev., Pt. II 38, 650 (1991).

    Article  ADS  Google Scholar 

  23. D. Vasileska, D. Mamaluy, H. R. Khan, K. Raleva, and S. M. Goodnick, J. Comput. Theor. Nanosci. 5, 1 (2008).

    Article  Google Scholar 

  24. S. M. Ramey and D. K. Ferry, Physica B 314, 350 (2002).

    Article  ADS  Google Scholar 

  25. D. Vasileska, H. R. Khan, and S. S. Ahmed, Int. J. Nanosci. 4, 305 (2005).

    Article  Google Scholar 

  26. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  27. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor and Device Simulation (Springer, Wien, 1989).

    Book  Google Scholar 

  28. S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, J. Appl. Phys. 83, 826 (1998).

    Article  ADS  Google Scholar 

  29. C. Canali, G. Majni, R. Minder, and G. Ottaviani, IEEE Trans. Electron Dev. 22, 1045 (1975).

    Article  ADS  Google Scholar 

  30. E. Pop, R. W. Dutton, and K. E. Goodson, J. Appl. Phys. 96, 4998 (2004).

    Article  ADS  Google Scholar 

  31. M. V. Fischetti, IEEE Trans. Electron Dev. 38, 634 (1991).

    Article  ADS  Google Scholar 

  32. W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, Heidelberg, 2005).

    Book  Google Scholar 

  33. K. Brennan and K. Hess, Solid State Electron. 27, 347 (1984).

    Article  ADS  Google Scholar 

  34. S. O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, New York, 2002).

    Google Scholar 

  35. J. G. Ruch, IEEE Trans. Electron Dev. 19, 652 (1972).

    Article  ADS  Google Scholar 

  36. M. Yao and W. Shan, J. Adv. Dielectr. 3, 1350017 (2013).

    Article  Google Scholar 

  37. T. Gupta, Copper Interconnect Technology (Springer, New York, 2009), Chap. 2.

    Book  Google Scholar 

  38. K. R. Shanbhag and P. C. Subramaniam, in Proceedings of the International Workshop on Physics of Semiconductor Devices IWPSD, December 16–20, 2007, Ed. by K. L. Narasimhan and D. K. Sharmap, p. 257.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Akbari Tochaei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari Tochaei, A., Arabshahi, H., Benam, M.R. et al. Comparison between Si/SiO2 and InP/Al2O3 based MOSFETs. J. Exp. Theor. Phys. 123, 869–874 (2016). https://doi.org/10.1134/S1063776116130203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116130203

Navigation