Recovery time in quantum dynamics of wave packets

Atoms, Molecules, Optics

Abstract

A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of the system is established. The recovery time is the longest for the maximal excitation level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).ADSCrossRefGoogle Scholar
  2. 2.
    P. C. Hemmer, L. C. Maximon, and H. Wergeland, Phys. Rev. 111, 689 (1958).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Bocchieri and A. Loinger, Phys. Rev. 107, 337 (1957).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Peres, Phys. Rev. Lett. 49, 1118 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    T. Hogg and B. A. Huberman, Phys. Rev. Lett. 48, 711 (1982).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    I. Sh. Averbukh and N. F. Perelman, Phys. Lett. A 139, 449 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    I. Sh. Averbukh and N. F. Perelman, Sov. Phys. JETP 69, 464 (1989).Google Scholar
  8. 8.
    A. Peres, Phys. Rev. A 30, 1610 (1984).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič, Phys. Rep. 435, 33 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1971).ADSGoogle Scholar
  11. 11.
    I. Sh. Averbukh and N. F. Perelman, Sov. Phys. Usp. 34, 572 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    R.W. Robinett, Phys. Rep. 392, 1 (2004).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Stolow, Phyl. Trans. R. Soc. London A 356, 345 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    K. Ohmori, Ann. Rev. Phys. Chem. 60, 487 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    S. I. Vetchinkin, A. S. Vetchinkin, V. V. Eryomin, and I. M. Umanskii, Chem. Phys. Lett. 215, 11 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Eryomin, S. I. Vetchinkin, and I. M. Umanskii, J. Chem. Phys. 101, 10730 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    C. Leichtle, I. Sh. Averbukh, and W. P. Schleich, Phys. Rev. A 54, 5299 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    M. L. Strekalov, J. Math. Chem. 54, 1134 (2016).MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. H. Zewail, Femtochemistry (World Scientific, Singapore, 1994).CrossRefGoogle Scholar
  20. 20.
    G. Albert and P. Zoller, Phys. Rep. 199, 231 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    R. A. L. Smith, J. R. R. Verlet, and H. H. Fielding, Phys. Chem. Chem. Phys. 5, 3567 (2003).CrossRefGoogle Scholar
  22. 22.
    I. I. Ryabtsev, I. I. Beterev, D. B. Tret’yakov, V. M. Entin, and E. A. Yakshina, Phys. Usp. 59, 196 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    K. Leo, J. Shah, and E. O. Gobel, Phys. Rev. Lett. 66, 201 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    H. M. Pastawski, P. R. Levstein, G. Usaj, J. Raya, and J. Hirschinger, Physica A 283, 166 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    M. Leibscher and I. Sh. Averbukh, Phys. Rev. A 63, 043407 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    M. Kac, Am. J. Math. 65, 609 (1943).CrossRefGoogle Scholar
  27. 27.
    I. Percival, Adv. Chem. Phys. 36, 1 (1977).CrossRefGoogle Scholar
  28. 28.
    G. Bateman and A. Erdelyi, Higher Trancsendent Functions (McGraw-Hill, New York, 1955; Nauka, Moscow, 1967), Vol. 3.MATHGoogle Scholar
  29. 29.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Fizmatlit, Moscow, 1963; Academic, New York, 2000).Google Scholar
  30. 30.
    J. Dufayard, B. Majoumat, and O. Nedelec, Chem. Phys. 128, 537 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    N. Margolus and L. B. Levitin, Physica D 120, 188 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Voevodskii Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations