Skip to main content
Log in

Waveguide modes of 1D photonic crystals in a transverse magnetic field

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Freeman, Fiber-Optic Systems for Telecommunications (Wiley, New York, 2002; Tekhnosfera, Moscow, 2006).

    Google Scholar 

  2. H. G. Unger, Planar Optical Waveguides and Fibres (Oxford Univ. Press, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  3. O. K. Sklyarov, Fiber-Optic Networks and Communication Systems (SOLON-Press, Moscow, 2001) [in Russian].

    Google Scholar 

  4. D. V. Iorgachev and O. V. Bondarenko, Fiber-Optical Cables and Communication Lines (Eko-Trendz, Moscow, 2002) [in Russian].

    Google Scholar 

  5. M. Salib, L. Liao, and R. Jones, Intel Technol. J. 8, 143 (2004).

    Google Scholar 

  6. A. M. Zheltikov, Phys. Usp. 47, 1205 (2004).

    Article  ADS  Google Scholar 

  7. Y. Tanaka, H. Nakamura, Y. Sugimoto, et al., Phys. Lett. 86, 081108 (2005).

    Google Scholar 

  8. M. Inoue, K. I. Arai, T. Fujiiet, et al., J. Appl. Phys. 83, 6768 (1998).

    Article  ADS  Google Scholar 

  9. V. N. Berzhansky, T. V. Mikhailova, A. V. Karavainikov, et al., J. Magn. Soc. Jpn. 36, 42 (2012).

    Article  Google Scholar 

  10. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, et al., J. Phys. D 36, 277 (2003).

    Article  ADS  Google Scholar 

  11. A. A. Fedyanin, T. Yoshida, K. Nishimura, et al., J. Magn. Magn. Mater. 96, 258 (2003).

    Google Scholar 

  12. A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, et al., J. Magn. Magn. Mater. 282, 256 (2004).

    Article  ADS  Google Scholar 

  13. S. Kahl and A. M. Grishin, Appl. Phys. Lett. 84, 1438 (2004).

    Article  ADS  Google Scholar 

  14. M. Inoue, K. I. Arai, M. Abe, et al., J. Magn. Soc. Jpn. 22, 141 (1998).

    Article  Google Scholar 

  15. M. Inoue, A.V. Baryshev, A. B. Khanikaev, et al., IEICE Trans. Electron. E91-C, 1630 (2008).

    Article  ADS  Google Scholar 

  16. B. Gaiyan, D. Lijuan, F. Shuai, et al., Opt. Mater. 35, 252 (2012).

    Article  ADS  Google Scholar 

  17. M. Vasiliev, V. A. Kotov, K. Alameh, et al., IEEE Trans. Magn. 44, 323 (2008).

    Article  ADS  Google Scholar 

  18. A. K. Zvezdin and V. I. Belotelov, Eur. Phys. J. B 37, 479 (2004).

    Article  ADS  Google Scholar 

  19. T. Goto, A. V. Baryshev, M. Inoue, et al., Phys. Rev. B 79, 125103 (2009).

    Article  ADS  Google Scholar 

  20. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, Phys. Usp. 53, 243 (2010).

    Article  ADS  Google Scholar 

  21. A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, et al., Phys. B: Condens. Matter 394, 277 (2007).

    Article  ADS  Google Scholar 

  22. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, et al., Appl. Phys. Lett. 92, 251112 (2008).

    Article  ADS  Google Scholar 

  23. R. Badugu, E. Descrovi, and J. R. Lakowicz, Anal. Biochem. 445, 1 (2014).

    Article  Google Scholar 

  24. A. N. Kalish, D. O. Ignatyeva, V. I. Belotelov, et al., Laser Phys. 24, 094006 (2014).

    Article  ADS  Google Scholar 

  25. A. Zh. Prokhorov, G. A. Smolenskii, and A. N. Ageev, Sov. Phys. Usp. 27, 339 (1984).

    Article  ADS  Google Scholar 

  26. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, et al., J. Exp. Theor. Phys. 110, 816 (2010)].

    Article  ADS  Google Scholar 

  27. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, et al., Phys. Rev. X 3, 041019 (2013).

    Google Scholar 

  28. E. Ferreiro-Vila, J. M. Garcia-Martin, A. Cebollada, et al., Opt. Express 21, 4917 (2013).

    Article  ADS  Google Scholar 

  29. P. Yeh and A. Yariv, J. Opt. Soc. Am. 67, 423 (1977).

    Article  ADS  Google Scholar 

  30. A. Yariv and P. Ye, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Mir, Moscow, 1987, Wiley, New York, 2003).

    Google Scholar 

  31. P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).

    Article  ADS  Google Scholar 

  32. M. Inoue, H. Uchida, K. Nishimura, et al., J. Mater. Chem. 16, 678 (2006).

    Article  Google Scholar 

  33. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, et al., Opt. Express 9, 748 (2001).

    Article  ADS  Google Scholar 

  34. Y. Xu, A. Yariv, J. Fleming, et al., Opt. Express 11, 1039 (2003).

    Article  ADS  Google Scholar 

  35. A. Mizrahi and L. Schachter, Opt. Express 12, 3156 (2004).

    Article  ADS  Google Scholar 

  36. A. K. Zvezdin and V. A. Kotov, Magneto-Optics of Thin Films (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  37. N. E. Khokhlov, A. R. Prokopov, A. N. Shaposhnikov, et al., J. Phys. D: App. Phys. 48, 095001 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sylgacheva.

Additional information

Original Russian Text © D.A. Sylgacheva, N.E. Khokhlov, A.N. Kalish, V.I. Belotelov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 5, pp. 851–858.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sylgacheva, D.A., Khokhlov, N.E., Kalish, A.N. et al. Waveguide modes of 1D photonic crystals in a transverse magnetic field. J. Exp. Theor. Phys. 123, 737–743 (2016). https://doi.org/10.1134/S1063776116110236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116110236

Navigation