Skip to main content
Log in

Usefulness of multiqubit W-type states in quantum information processing

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the efficiency of multiqubit W-type states as resources for quantum information. For this, we identify and generalize four-qubit W-type states. Our results show that these states can be used as resources for deterministic quantum information processing. The utility of results, however, is limited by the availability of experimental setups to perform and distinguish multiqubit measurements. We therefore emphasize protocols where two users want to establish an optimal bipartite entanglement using the partially entangled W-type states. We find that for such practical purposes, four-qubit W-type states can be a better resource in comparison to three-qubit W-type states. For a dense coding protocol, our states can be used deterministically to send two bits of classical message by locally manipulating a single qubit. In addition, we also propose a realistic experimental method to prepare the four-qubit W-type states using standard unitary operations and weak measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein et al., Phys. Rev. 47, 777 (1935).

    Article  ADS  Google Scholar 

  2. C. H. Bennett and S. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  4. K. Bostrom and T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002).

    Article  ADS  Google Scholar 

  5. N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  6. M. Zukowski, A. Zeilinger, M. A. Horne, and A. Eckert, Phys. Rev. Lett. 71, 4287 (1993).

    Article  ADS  Google Scholar 

  7. B. S. Shi and A. Tomita, Phys. Lett. A 296, 161 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Agrawal and A. K. Pati, Phys. Rev. A 74, 062320 (2006).

    Article  ADS  Google Scholar 

  9. S. Adhikari and S. Gangopadhyay, Int. J. Theor. Phys. 48, 403 (2009).

    Article  MathSciNet  Google Scholar 

  10. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  11. Y. H.Kim, S. P. Kulik, and Y. Shih, Phys. Rev. Lett. 86, 1370 (2001).

    Article  ADS  Google Scholar 

  12. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, Phys. Rev. Lett. 92, 077901 (2004).

    Article  ADS  Google Scholar 

  13. S. Dogra, K. Dorai, Phys. Rev. A 91, 022312 (2015).

    Article  ADS  Google Scholar 

  14. X. Zang, M. Yang, F. Ozaydin, W. Song, and Z. Cao, arXiv:1604.05580v1[quant-ph].

  15. S. Adhikari, arXiv:1504.07765v1[quant-ph].

  16. Liange Wu et al., Appl. Phys. Lett. 108, 161102 (2016).

    Article  ADS  Google Scholar 

  17. Li Dong et al., Phys. Rev. A 93, 012308 (2016).

    Article  ADS  Google Scholar 

  18. I. B. Djordjevic, IEEE Photon. J. 2, 1 (2010).

    Article  Google Scholar 

  19. J. Etesse, M. Bouillard, B. Kanseri, and R. T-Brouri, Phys. Rev. Lett. 114, 193602 (2015).

    Article  ADS  Google Scholar 

  20. K. Nemoto and W. J. Munro, Phys. Rev. Lett. 93, 250502 (2004).

    Article  ADS  Google Scholar 

  21. M. Fiorentino and F. N. C. Wong, Phys. Rev. Lett. 93, 250502 (2004).

    Article  Google Scholar 

  22. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, Phys. Rev. Lett. 95, 210506 (2005).

    Article  ADS  Google Scholar 

  23. Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988).

    Article  ADS  Google Scholar 

  24. Y. Kim, Y. Jeong, Y. Ra, and Y. Kim, Opt. Express 17, 11978 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Adhikari, S. & Kumar, A. Usefulness of multiqubit W-type states in quantum information processing. J. Exp. Theor. Phys. 123, 572–581 (2016). https://doi.org/10.1134/S1063776116110200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116110200

Navigation