Skip to main content
Log in

A statistical model of a metallic inclusion in semiconducting media

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The properties of an isolated multicharged atom embedded into a semiconducting medium are discussed. The analysis generalizes the results of the known Thomas–Fermi theory for a multicharged (Z ≫ 1) atom in vacuum when it is immersed into an electron–hole gas of finite temperature. The Thomas–Fermi–Debye (TFD) atom problem is directly related to the properties of donors in low-doped semiconductors and is alternative in its conclusions to the ideal scenario of dissociation of donors. In the existing ideal statistics, an individual donor under infinitely low doping is completely ionized (a charged center does not hold its neutralizing counter-ions). A Thomas–Fermi–Debye atom (briefly, a TFD donor) remains a neutral formation that holds its screening “coat” even for infinitely low doping level, i.e., in the region of n d λ0 3 ≪ 1, where n d is the concentration of the doping impurity and λ0 is the Debye length with the parameters of intrinsic semiconductor. Various observed consequences in the behavior of a TFD donor are discussed that allow one to judge the reality of the implications of the TFD donor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Blakemore, Semiconductor Statistics (Pergamon Press, Oxford, 1962).

    MATH  Google Scholar 

  2. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  4. R. Robinson and R. Stokes, Electrolyte Solutions (Butterworths, London, 1959).

    Google Scholar 

  5. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Moscow, Nauka, 1979).

    Google Scholar 

  6. L. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1926).

    Article  ADS  Google Scholar 

  7. E. Fermi, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 6, 602 (1927)

    Google Scholar 

  8. E. Fermi, Z. Phys. 48, 73 (1928).

    Article  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  10. P. Gambas, Die Statistische Theorie des Atoms und Ihre Anwendungen (Springer, Vienna, 1949) [in German].

    Book  Google Scholar 

  11. Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundqvist and N. H. March (Plenum Press, New York, 1983).

  12. D. Chattopadhyay and H. Queissar, Rev. Mod. Phys. 53, 745 (1981).

    Article  ADS  Google Scholar 

  13. V. M. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors (Nauka, Moscow, 1984; North-Holland, New York, 1987).

    Google Scholar 

  14. T. Ando, B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  15. F. Stern and W. Howard, Phys. Rev. 163, 816 (1967).

    Article  ADS  Google Scholar 

  16. P. Debye and E. Huckel, Phys. Z. 24, 305 (1923).

    Google Scholar 

  17. L. Onsager, Phys. Z. 28, 277 (1927).

    Google Scholar 

  18. E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981), Sect. 26.

    Google Scholar 

  19. A. V. Rzhanov, V. P. Migal’, and N. N. Migal’, Sov. Phys. Semicond. 3, 190 (1969).

    Google Scholar 

  20. A. Rzhanov, W. Migal’, and N. Migal’, J. Vacuum Sci. Technol. 6, 566 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Shikin.

Additional information

Original Russian Text © V.B. Shikin, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 5, pp. 985–990.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikin, V.B. A statistical model of a metallic inclusion in semiconducting media. J. Exp. Theor. Phys. 123, 859–863 (2016). https://doi.org/10.1134/S1063776116110194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116110194

Navigation