Skip to main content
Log in

Conductivity of metal vapors at the critical point

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The conductivity of metal vapors at the critical point and near it has been considered. The liquid-metal conductivity originates in this region. The thermodynamic parameters of the critical point, the density of conduction electrons, and the conductivities of various metal vapors have been calculated within the unified approach. It has been proposed to consider the conductivity at the critical point—critical conductivity—as the fourth critical parameter in addition to the density, temperature, and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molecular Theory of Gases and Liquids, Ed. by J. O. Hirschfelder, C. F. Curtiss, and R. Byron Bird (Wiley, New York, 1954).

  2. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 55, 1061 (2012).

    Article  ADS  Google Scholar 

  3. H. Renkert, F. Henseland, and E. U. Franck, Ber. Bunsenges. Phys. Chem. 75, 507 (1971).

    Article  Google Scholar 

  4. R. Winter, F. Hensel, T. Bodensteiner, and W. Glaser, Ber. Bunsenges. Phys. Chem. 91, 1327 (1987).

    Article  Google Scholar 

  5. G. Franz, W. Freyland, and F. Hensel, J. Phys. 41, C8–194 (1980).

    Google Scholar 

  6. I. K. Kikoin and A. P. Senchenkov, Fiz. Met. Metalloved. 24, 843 (1967).

    Google Scholar 

  7. Handbook of Thermodynamic and Transport Properties of Alkali Metals, Ed. by R. W. Ohse (Blackwell Scientific, New York, 1985).

  8. G. R. Gathers, Int. J. Thermophys. 4, 209 (1983).

    Article  ADS  Google Scholar 

  9. J. Clérouin, P. Noiret, V. N. Korobenko, and A. D. Rakhel, Phys. Rev. B 78, 224203 (2008).

    Article  ADS  Google Scholar 

  10. R. S. Hixson, M. A. Winkler, and M. L. Hodgson, Phys. Rev. B 42, 6485 (1990).

    Article  ADS  Google Scholar 

  11. V. N. Korobenko and A. D. Rakhel, J. Exp. Theor. Phys. 112, 649 (2011).

    Article  ADS  Google Scholar 

  12. A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, Phys. Rev. E 54, 5851 (1996).

    Article  ADS  Google Scholar 

  13. R. S. Hixson and M. A. Winkler, Int. J. Thermophys. 11, 709 (1990).

    Article  ADS  Google Scholar 

  14. V. N. Korobenko and A. D. Rakhel, Phys. Rev B 88, 134203 (2013).

    Article  ADS  Google Scholar 

  15. Ya. B. Zel’dovich and L. D. Landau, Zh. Eksp. Teor. Fiz. 14, 32 (1944).

    Google Scholar 

  16. A. V. Bushman and V. E. Fortov, Sov. Phys. Usp. 26, 465 (1983).

    Article  ADS  Google Scholar 

  17. V. E. Fortov, A. N. Dremin, and A. A. Leont’ev, Teplofiz. Vys. Temp. 13, 1072 (1975).

    Google Scholar 

  18. E. M. Apfelbaum and V. S. Vorob’ev, Chem. Phys. Lett. 467, 318 (2009).

    Article  ADS  Google Scholar 

  19. D. A. Young and B. J. Alder, Phys. Rev. A 3, 364 (1971).

    Article  ADS  Google Scholar 

  20. J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, London, 1972).

    Book  MATH  Google Scholar 

  21. E. M. Apfelbaum, Phys. Chem. Liq. 48, 534 (2010).

    Article  Google Scholar 

  22. R. Redmer, H. Reinholtz, G. Roepke, R. Winter, F. Noll, and F. Hensel, J. Phys.: Condens. Matter 4, 1659 (1992).

    ADS  Google Scholar 

  23. D. V. Knyazev and P. R. Levashov, Phys. Plasmas 21, 07330 (2014).

    Article  Google Scholar 

  24. A. L. Khomkin and A. S. Shumikhin, High Temp. 51, 594 (2013).

    Article  Google Scholar 

  25. D. I. Zhukhovitskii, Teplofiz. Vys. Temp. 31, 40 (1993).

    Google Scholar 

  26. A. L. Khomkin and A. S. Shumikhin, High Temp. 50, 307 (2012).

    Article  Google Scholar 

  27. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 118, 72 (2014).

    Article  ADS  Google Scholar 

  28. R. Redmer, Phys. Rev. E 59, 1973 (1999).

    Article  ADS  Google Scholar 

  29. A. Banerjia and J. R. Smith, Phys. Rev B 37, 6632 (1988).

    Article  ADS  Google Scholar 

  30. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).

    Article  ADS  Google Scholar 

  31. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 121, 521 (2015).

    Article  ADS  Google Scholar 

  32. S. M. Stishov, Phys. Rev. B 47, 12260 (1993).

    Article  ADS  Google Scholar 

  33. A. L. Khomkin and A. S. Shumikhin, Plasma Phys. Rep. 39, 857 (2013).

    Article  ADS  Google Scholar 

  34. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 120, 672 (2015).

    Article  ADS  Google Scholar 

  35. J. Bardeen, J. Chem. Phys. 6, 367 (1938).

    Article  ADS  Google Scholar 

  36. A. A. Likalter, Phys. Usp. 43, 777 (2000).

    Article  ADS  Google Scholar 

  37. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1983).

    Article  ADS  Google Scholar 

  38. J. H. Rose, J. R. Smith, and J. Ferrante, Phys. Rev. B 28, 1835 (1983).

    Article  ADS  Google Scholar 

  39. G. Faussurier, C. Blancard, and P. L. Silvestrelli, Phys. Rev. B 79, 134202 (2009).

    Article  ADS  Google Scholar 

  40. H. Hess, Phys. Chem. Liq. 30, 251 (1995).

    Article  Google Scholar 

  41. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter (Birkhäuser, Basel, Switzerland, 2005).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khomkin.

Additional information

Original Russian Text © A.L. Khomkin, A.S. Shumikhin, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 5, pp. 1020–1029.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomkin, A.L., Shumikhin, A.S. Conductivity of metal vapors at the critical point. J. Exp. Theor. Phys. 123, 891–898 (2016). https://doi.org/10.1134/S1063776116100058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116100058

Navigation