Skip to main content
Log in

Orientational transitions in ferromagnetic liquid crystals with bistable coupling between colloidal particles and the matrix

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the orientational response of a ferromagnetic liquid crystal that is induced by magnetic and electric fields. A modified form of the energy of the orientational interaction between magnetic impurity particles and the liquid crystal matrix that leads to bistable coupling is considered. It is shown that apart from magnetic impurity segregation, first-order orientational transitions can be due to the bistability of the potential of the orientational coupling between the director and the magnetization. The ranges of material parameters that lead to optical bistability are determined. The possibility of first-order orientational transitions is analyzed for the optical phase difference between the ordinary and extraordinary light rays transmitted through a ferronematic cell. It is shown that an electric field applied in the given geometry considerably enhances the magneto-orientational response of the ferronematic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Garbovskiy and A. V. Glushchenko, Solid State Phys. 62, 1 (2011).

    Google Scholar 

  2. F. Brochard and P. G. de Gennes, J. de Phys. 31, 691 (1970).

    Article  Google Scholar 

  3. A. Glushchenko, Chae Il Cheon, J. West, F. Li, E. Büyüktanir, Yu. Reznikov, and A. Buchnev, Mol. Cryst. Liq. Cryst. 453, 227 (2006).

    Article  Google Scholar 

  4. Fenghua Li, O. Buchnev, Chae Il Cheon, A. Glushchenko, V. Reshetnyak, and Yu. Reznikov, Phys. Rev. Lett. 97, 147801 (2006).

    Article  ADS  Google Scholar 

  5. O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Reshetnyak, and Yu. Reznikov, J. Opt. Soc. Am. B 24, 1512 (2007).

    Article  ADS  Google Scholar 

  6. L. M. Lopatina and J. R. Selinger, Phys. Rev. Lett. 102, 197802 (2009).

    Article  ADS  Google Scholar 

  7. S. M. Shelestiuk, V. Yu. Reshetnyak, and T. J. Sluckin, Phys. Rev. E 83, 041705 (2011).

    Article  ADS  Google Scholar 

  8. N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, Soft Matter 7, 4742 (2011).

    Article  ADS  Google Scholar 

  9. Yu. Garbovskiy, J. R. Baptist, J. Thompson, T. Hunter, J. H. Lim, Seong Gi Min, J. B. Wiley, L. M. Malkinski, A. Glushchenko, and Z. Celinski, Appl. Phys. Lett. 101, 181109 (2012).

    Article  ADS  Google Scholar 

  10. D. V. Makarov and A. N. Zakhlevnykh, Soft Matter 8, 6493 (2012).

    Article  Google Scholar 

  11. N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, J. Colloid Interface Sci. 386, 158 (2012).

    Article  Google Scholar 

  12. Yu. Garbovskiy, J. R. Baptist, J. Thompson, T. Hunter, J. H. Lim, S. G. Min, J. B. Wiley, L. M. Malkinski, A. Glushchenko, and Z. Celinski, Appl. Phys. Lett. 101, 181109 (2012).

    Article  ADS  Google Scholar 

  13. A. Mertelj, D. Lisjak, M. Drofenik, and M. Copic, Nature 504, 237 (2013).

    Article  ADS  Google Scholar 

  14. Yu. L. Raikher, V. I. Stepanov, and A. N. Zakhlevnykh, Soft Matter 9, 177 (2013).

    Article  ADS  Google Scholar 

  15. A. N. Zakhlevnykh and D. A. Petrov, J. Mol. Liq. 198, 223 (2014).

    Article  Google Scholar 

  16. A. J. Davidson and N. J. Mottram, Phys. Rev. E 65, 051710 (2002).

    Article  ADS  Google Scholar 

  17. G.-C. Yang and S.-H. Zhang, Liq. Cryst. 29, 641 (2002).

    Article  Google Scholar 

  18. Z. Suhua, A. Hailong, G. Rongua, and Y. Guochen, Liq. Cryst. 33, 227 (2006).

    Article  Google Scholar 

  19. L. J. Cummings and G. Richardson, Eur. J. Appl. Math. 17, 435 (2006).

    Article  MathSciNet  Google Scholar 

  20. A. N. Zakhlevnykh and O. R. Semenova, Mol. Cryst. Liq. Cryst. 540, 219 (2011).

    Article  Google Scholar 

  21. A. N. Zakhlevnykh and O. R. Semenova, Tech. Phys. 57, 157 (2012).

    Article  Google Scholar 

  22. Satoshi Aya, Kh. V. Le, Yu. Sasaki, F. Araoka, K. Ishikawa, and H. Takezoe, Phys. Rev. E 86, 010701 (2012).

    Article  ADS  Google Scholar 

  23. L. J. Cummings, C. Cai, and L. Kondic, Phys. Rev. E 88, 012509 (2013).

    Article  ADS  Google Scholar 

  24. A. N. Zakhlevnykh and D. A. Petrov, J. Magn. Magn. Mater. 393, 517 (2015).

    Article  ADS  Google Scholar 

  25. A. N. Zakhlevnykh and D. A. Petrov, J. Magn. Magn. Mater. 401, 188 (2016).

    Article  ADS  Google Scholar 

  26. S. V. Burylov and A. N. Zakhlevnykh, Phys. Rev. E 88, 012511 (2013).

    Article  ADS  Google Scholar 

  27. S. V. Burylov and A. N. Zakhlevnykh, Phys. Rev. E 88, 052503 (2013).

    Article  ADS  Google Scholar 

  28. Z. Mitróová, N. Tomašovicovü, M. Timko, M. Konerackü, J. Kovác, J. Jadzyn, I. Vüvra, N. Éber, T. Tóth-Katona, E. Beaugnon, X. Chaud, and P. Kopcanský, New J. Chem. 35, 1260 (2011).

    Article  Google Scholar 

  29. O. Buluy, S. Nepijko, V. Reshetnyak, E. Ouskova, V. Zadorozhnii, A. Leonhardt, M. Ritschel, G. Schönhense, and Yu. Reznikov, Soft Matter 7, 644 (2011).

    Article  ADS  Google Scholar 

  30. M. D. Lynch and D. L. Patrick, Chem. Mater. 16, 762 (2004).

    Article  Google Scholar 

  31. U. Tkalec, M. Škarabot, and I. Muševic, Soft Matter 4, 2402 (2008).

    Article  ADS  Google Scholar 

  32. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Univ. Press, Oxford, UK, 1993).

    Google Scholar 

  33. S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 107 (1995).

    Article  Google Scholar 

  34. Z. Raszewski, J. Kedzierski, J. Rutkowska, J. Zielinski, J. Zmija, R. D. Dabrowski, and T. Opara, Liq. Cryst. 14, 1959 (1993).

    Article  Google Scholar 

  35. P. Kopcanský, N. Tomašovicová, M. Timko, M. Koneracká, V. Závišová, L. Tomco, and J. Jadzyn, J. Phys.: Conf. Ser. 200, 072055 (2010).

    ADS  Google Scholar 

  36. P. Kopcanský, N. Tomašovicová, M. Koneracká, V. Závišová, M. Timko, A. Džarová, A. Šprincová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, and J. Jadzyn, Phys. Rev. E 78, 011702 (2008).

    Article  ADS  Google Scholar 

  37. A. Mertelj, N. Osterman, D. Lisjak, and M. Copic, Soft Matter 10, 9065 (2014).

    Article  ADS  Google Scholar 

  38. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, New York, 1994).

    Book  Google Scholar 

  39. J. Kędzierski, Z. Raszewski, M. A. Kojdecki, E. Kruszelnicki-Nowinowski, P. Perkowski, W. Piecek, E. Miszczyk, J. Zieliński, P. Morawiak, and K. Ogrodnik, Opto-Electron. Rev. 18, 214 (2010).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zakhlevnykh.

Additional information

Original Russian Text © A.N. Zakhlevnykh, D.A. Petrov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 123, No. 4, pp. 793–806.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakhlevnykh, A.N., Petrov, D.A. Orientational transitions in ferromagnetic liquid crystals with bistable coupling between colloidal particles and the matrix. J. Exp. Theor. Phys. 123, 687–698 (2016). https://doi.org/10.1134/S1063776116090168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116090168

Navigation