Skip to main content
Log in

Diffracted transition radiation of an ultra-high-energy relativistic electron beam in a thin single-crystal wafer

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider diffracted transition radiation (DTR) emitted by high-energy relativistic electrons crossing a thin single-crystal wafer in the Laue geometry. The expression describing the DTR angular density is derived for the case where the electron path length in the target is much smaller than the X-ray wave extinction length in the crystal and the kinematic nature of this expression is demonstrated. It is shown that the DTR angular density in a thin target is proportional to the target thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Garibian and C. Yang, X-Ray Transition Radiation (Akad. Nauk ArmSSR, Erevan, 1983) [in Russian].

    Google Scholar 

  2. A. Caticha, Phys. Rev. A 40, 4322 (1989).

    Article  ADS  Google Scholar 

  3. N. N. Nasonov, Phys. Lett. A 246, 148 (1998).

    Article  ADS  Google Scholar 

  4. X. Artru and P. Rullhusen, Nucl. Instrum. Methods Phys. Res. B 145, 1 (1998).

    Article  ADS  Google Scholar 

  5. M. L. Ter-Mikaelyan, The Influence of the Medium on High-Energy Electromagnetic Processes (AN ArmSSR, Yerevan, 1969), p. 459 [in Russian].

    Google Scholar 

  6. G. M. Garibyan and C. Yang, Sov. Phys. JETP 34, 495 (1971).

    ADS  Google Scholar 

  7. V. G. Baryshevskii and I. D. Feranchuk, Sov. Phys. JETP 34, 502 (1971).

    ADS  Google Scholar 

  8. N. Nasonov and A. Noskov, Nucl. Instrum. Methods Phys. Res. B 201, 67 (2003).

    Article  ADS  Google Scholar 

  9. A. S. Kubankin, N. N. Nasonov, V. I. Sergienko, and I. E. Vnukov, Nucl. Instrum. Methods Phys. Res. B 201, 97 (2003).

    Article  ADS  Google Scholar 

  10. Y. N. Adischev, S. N. Arishev, A. V. Vnukov, et al., Nucl. Instrum. Methods Phys. Res. B 201, 114 (2003).

    Article  ADS  Google Scholar 

  11. N. N. Nasonov, V. V. Kaplin, S. R. Uglov, et al., Nucl. Instrum. Methods Phys. Res. B 227, 41 (2005).

    Article  ADS  Google Scholar 

  12. S. V. Blazhevich and A. V. Noskov, Nucl. Instrum. Methods Phys. Res. B 252, 69 (2006).

    Article  ADS  Google Scholar 

  13. C. V. Blazhevich and A. V. Noskov, Poverkhnost’, No. 6, 71 (2009).

    Google Scholar 

  14. C. V. Blazhevich and A. V. Noskov, J. Exp. Theor. Phys. 109, 901 (2009).

    Article  ADS  Google Scholar 

  15. S. V. Blazhevich and A. V. Noskov, Nucl. Instrum. Methods Phys. Res. B 266, 3770 (2008).

    Article  ADS  Google Scholar 

  16. S. V. Blazhevich and A. V. Noskov, J. Exp. Theor. Phys. 120, 753 (2015).

    Article  ADS  Google Scholar 

  17. I. D. Feranchuk and A. V. Ivashin, J. Phys. 46, 1981 (1985).

    Article  Google Scholar 

  18. K.-H. Brenzinger, S. Herberg, V. Limburg, H. Backe, et al., Phys. A 358, 107 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Noskov.

Additional information

Original Russian Text © S.V. Blazhevich, A.V. Noskov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 123, No. 4, pp. 643–648.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blazhevich, S.V., Noskov, A.V. Diffracted transition radiation of an ultra-high-energy relativistic electron beam in a thin single-crystal wafer. J. Exp. Theor. Phys. 123, 551–556 (2016). https://doi.org/10.1134/S1063776116090028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116090028

Navigation