Skip to main content
Log in

Microscopic theory of dipole–dipole interaction in ensembles of impurity atoms in a Fabry–Perot cavity

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We develop a consistent quantum theory of the collective effects that take place when electromagnetic radiation interacts with a dense ensemble of impurity centers embedded in a transparent dielectric and placed in a Fabry–Perot cavity. We have calculated the spontaneous decay dynamics of an excited impurity atom as a specific example of applying the developed general theory. We analyze the dependence of the decay rate on the density of impurity centers and the sample sizes as well as on the characteristic level shifts of impurity atoms caused by the internal fields of the dielectric. We show that a cavity can affect significantly the pattern of collective processes, in particular, the lifetimes of collective states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  2. J. Knoester and S. Mukamel, Phys. Rev. A 40, 7065 (1989).

    Article  ADS  Google Scholar 

  3. R. J. Glauber and M. Lewenstein, Phys. Rev. A 43, 467 (1991).

    Article  ADS  Google Scholar 

  4. P. W. Milonni, J. Mod. Opt. 42, 1991 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, J. Phys. B 29, 3763 (1996).

    Article  ADS  Google Scholar 

  6. G. Juzeliunas, Phys. Rev. A 55, R4015 (1997).

    Article  ADS  Google Scholar 

  7. M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. 85, 1851 (2000).

    Article  ADS  Google Scholar 

  8. P. R. Berman and P. W. Milonni, Phys. Rev. Lett. 92, 053601 (2004).

    Article  ADS  Google Scholar 

  9. Hao Fu and P. R. Berman, Phys. Rev. A 72, 022104 (2005).

    Article  ADS  Google Scholar 

  10. R. Pierrat and R. Carminati, Phys. Rev. A 81, 063802 (2010).

    Article  ADS  Google Scholar 

  11. D. V. Kuznetsov, Vl. K. Rerikh, and M. G. Gladush, J. Exp. Theor. Phys. 113, 647 (2011).

    Article  ADS  Google Scholar 

  12. D. V. Kuznetsov, Vl. K. Rerikh, and M. G. Gladush, Theor. Math. Phys. 168, 1078 (2011).

    Article  Google Scholar 

  13. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 90, 012511 (2014).

    Article  ADS  Google Scholar 

  14. R. A. Zhitnikov, N. V. Kolesnikov, and V. I. Kosyakov, Sov. Phys. JETP 16, 839 (1963).

    ADS  Google Scholar 

  15. R. A. Zhitnikov and N. V. Kolesnikov, Sov. Phys. JETP 19, 65 (1964).

    Google Scholar 

  16. A. Abraham and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970; Mir, Moscow, 1973).

    Google Scholar 

  17. R. A. Avarmaa and K. K. Rebane, Sov. Phys. Usp. 31, 225 (1988).

    Article  ADS  Google Scholar 

  18. E. M. Purcell, Phys. Rev. 69, 674 (1946).

    Article  Google Scholar 

  19. G. Barton, Proc. R. Soc. London A 320, 251 (1970).

    Article  ADS  Google Scholar 

  20. G. S. Agarwal, Phys. Rev. A 12, 1475 (1975).

    Article  ADS  Google Scholar 

  21. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).

    Article  ADS  Google Scholar 

  22. I. V. Sokolov, Opt. Spectrosc. 53, 5 (1982).

    ADS  Google Scholar 

  23. A. O. Barut and J. P. Dowling, Phys. Rev. A 36, 649 (1987).

    Article  ADS  Google Scholar 

  24. J. P. Dowling, M. O. Scully, and F. DeMartini, Opt. Commun. 82, 415 (1991).

    Article  ADS  Google Scholar 

  25. J. P. Dowling, Found. Phys. 23, 895 (1993).

    Article  ADS  Google Scholar 

  26. G. S. Agarwal and S. D. Gupta, Phys. Rev. A 57, 667 (1998).

    Article  ADS  Google Scholar 

  27. I. M. Sokolov, D. V. Kupriyanov, R. G. Olave, and M. D. Havey, J. Mod. Opt. 57, 1833 (2010).

    Article  ADS  Google Scholar 

  28. W. Heitler, The Quantum Theory of Radiation (Courier Dover, New York, 1954; Inostr. Liter., Moscow, 1956).

    MATH  Google Scholar 

  29. I. M. Sokolov, D. V. Kupriyanov, and M. D. Havey, J. Exp. Theor. Phys. 112, 246 (2011).

    Article  ADS  Google Scholar 

  30. H. J. Metcalf and P. van der Straten, Laser Coolingand Trapping (Springer, New York, 1999).

    Book  Google Scholar 

  31. S. Chu, C. N. Cohen-Tannoundji, and W. D. Fillips, Usp. Fiz. Nauk 169, 271 (1999).

    Article  Google Scholar 

  32. S. Balik, A. L. Win, M. D. Havey, I. M. Sokolov, and D. V. Kupriyanov, Phys. Rev. A 87, 053817 (2013).

    Article  ADS  Google Scholar 

  33. J. Pellegrino, R. Bourgain, S. Jennewein, et al., Phys. Rev. Lett. 113, 133602 (2014).

    Article  ADS  Google Scholar 

  34. Ya. A. Fofanov, A. S. Kuraptsev, I. M. Sokolov, and M. D. Havey, Phys. Rev. A 84, 053811 (2011).

    Article  ADS  Google Scholar 

  35. A. S. Kuraptsev, I. M. Sokolov, and Ya. A. Fofanov, Opt. Spectrosc. 112, 401 (2012).

    Article  ADS  Google Scholar 

  36. Ya. A. Fofanov, A. S. Kuraptsev, I. M. Sokolov, and M. D. Havey, Phys. Rev. A 87, 063839 (2013).

    Article  ADS  Google Scholar 

  37. I. M. Sokolov, A. S. Kuraptsev, D. V. Kupriyanov, M. D. Havey, and S. Balik, J. Mod. Opt. 60, 50 (2013).

    Article  ADS  Google Scholar 

  38. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 91, 053822 (2015).

    Article  ADS  Google Scholar 

  39. M. J. Stephen, J. Chem. Phys. 40, 669 (1964).

    Article  ADS  Google Scholar 

  40. P. W. Milonni and P. L. Knight, Phys. Rev. A 10, 1096 (1974).

    Article  ADS  Google Scholar 

  41. W. Guerin, M. Araujo, and R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016).

    Article  ADS  Google Scholar 

  42. S. E. Skipetrov and I. M. Sokolov, Phys. Rev. Lett. 112, 023905 (2014).

    Article  ADS  Google Scholar 

  43. S. E. Skipetrov and I. M. Sokolov, Phys. Rev. Lett. 114, 053902 (2015).

    Article  ADS  Google Scholar 

  44. E. Akkermans and A. Gero, Europhys. Lett. 101, 54003 (2013).

    Article  ADS  Google Scholar 

  45. C. A. Muller and D. Delande, in Les Houches 2009-Session XCI: Ultracold Gases and Quantum Information, Ed. by C. Miniatura et al. (Oxford University Press, Oxford, 2011), pp. 441–533.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuraptsev.

Additional information

Original Russian Text © A.S. Kuraptsev, I.M. Sokolov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 2, pp. 275–287.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuraptsev, A.S., Sokolov, I.M. Microscopic theory of dipole–dipole interaction in ensembles of impurity atoms in a Fabry–Perot cavity. J. Exp. Theor. Phys. 123, 237–248 (2016). https://doi.org/10.1134/S1063776116070104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116070104

Navigation