Skip to main content
Log in

Spatial-symmetry-induced dark states and charge trapping effects in the coupled quantum dots

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In a system of N interacting single-level quantum dots (QDs), we study the relaxation dynamics and the current–voltage characteristics determined by symmetry properties of the QD arrangement. Different numbers of dots, initial charge configurations, and various coupling regimes to reservoirs are considered. We reveal that effective charge trapping occurs for particular regimes of coupling to the reservoir when more than two dots form a ring structure with the C N spatial symmetry. We reveal that the effective charge trapping caused by the C N spatial symmetry of N coupled QDs depends on the number of dots and the way of coupling to the reservoirs. We demonstrate that the charge trapping effect is directly connected with the formation of dark states, which are not coupled to reservoirs due to the system spatial symmetry C N. We also reveal the symmetry blockade of the tunneling current caused by the presence of dark states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. van der Wiel, S. de Franceschi, J. M. Elzerman, et al., Rev. Mod. Phys. 75, 1 (2002).

    Article  ADS  Google Scholar 

  2. R. M. Potok, I. G. Rau, H. Shtrikman, et al., Nature 446, 167 (2007).

    Article  ADS  Google Scholar 

  3. T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003).

    Article  ADS  Google Scholar 

  4. C. A. Stafford and S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994).

    Article  ADS  Google Scholar 

  5. K. A. Matveev, L. I. Glazman, and H. U. Baranger, Phys. Rev. B 54, 5637 (1996).

    Article  ADS  Google Scholar 

  6. D. Boese, W. Hofstetter, and H. Schoeller, Phys. Rev. B 66, 125315 (2002).

    Article  ADS  Google Scholar 

  7. K. Kikoin and Y. Avishai, Phys. Rev. B 65, 115329 (2002).

    Article  ADS  Google Scholar 

  8. P. A. Orellana, G. A. Lara, and E. V. Anda, Phys. Rev. B 65, 155317 (2002).

    Article  ADS  Google Scholar 

  9. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, Solid State Commun. 152, 1545 (2012).

    Article  ADS  Google Scholar 

  10. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, Eur. Phys. J. B 85, 249 (2012).

    Article  ADS  Google Scholar 

  11. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

    Article  ADS  Google Scholar 

  12. F. H. L. Koppens, J. A. Folk, J. M. Elzerman, et al., Science 309, 1346 (2005).

    Article  ADS  Google Scholar 

  13. M. F. Doty, J. I. Climente, M. Korkusinski, et al., Phys. Rev. Lett. 102, 047401 (2009).

    Article  ADS  Google Scholar 

  14. A. Hackl, D. Roosen, S. Kehrein, and W. Hofstetter, Phys. Rev. Lett. 102, 196601 (2009).

    Article  ADS  Google Scholar 

  15. M. Pletyukhov, D. Schuricht, and H. Schoeller, Phys. Rev. Lett. 104, 106801 (2010).

    Article  ADS  Google Scholar 

  16. H. Schoeller and J. Konig, Phys. Rev. Lett. 84, 3686 (2000).

    Article  ADS  Google Scholar 

  17. F. B. Anders and A. Schiller, Phys. Rev. B 74, 245113 (2006).

    Article  ADS  Google Scholar 

  18. P. Schmitteckert, Phys. Rev. B 70, 121302 (2004).

    Article  ADS  Google Scholar 

  19. F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev. B 79, 235336 (2009).

    Article  ADS  Google Scholar 

  20. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).

    MathSciNet  Google Scholar 

  21. K. Kikoin and Y. Avishai, Phys. Rev. Lett. 86, 2090 (2001).

    Article  ADS  Google Scholar 

  22. S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).

    Article  ADS  Google Scholar 

  23. V. N. Mantsevich, N. S. Maslova, and P. I. Arseyev, Solid State Commun. 168, 36 (2013).

    Article  ADS  Google Scholar 

  24. W. M. C. Foulkes, L. Mitas, R. J. Needs, et al., Rev. Mod. Phys. 73, 33 (2001).

    Article  ADS  Google Scholar 

  25. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).

    Article  ADS  Google Scholar 

  26. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  27. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

    Article  ADS  Google Scholar 

  28. M. A. Kastner, Phys. Today 46, 24 (1993).

    Article  ADS  Google Scholar 

  29. R. C. Ashoori, Nature 379, 413 (1996).

    Article  ADS  Google Scholar 

  30. M. Kuno, D. P. Fromm, H. F. Hamann, et al., J. Chem. Phys. 112, 3117 (2000).

    Article  ADS  Google Scholar 

  31. M. Kuno, D. P. Fromm, H. F. Hamann, et al., J. Chem. Phys. 115, 1028 (2001).

    Article  ADS  Google Scholar 

  32. M. R. Hummon, A. J. Stollenwerk, V. Narayanamurti, et al., Phys. Rev. B 81, 115439 (2010).

    Article  ADS  Google Scholar 

  33. M. Pioro-Ladriere, M. R. Abolfath, P. Zawadzki, et al., Phys. Rev. B 72, 125307 (2005).

    Article  ADS  Google Scholar 

  34. W. Liu, A. S. Bracker, D. Gammon, and M. F. Doty, Phys. Rev. B 87, 195308 (2013).

    Article  ADS  Google Scholar 

  35. B. S. Pujari, K. Joshi, D. G. Kanhere, and S. A. Blundell, Phys. Rev. B 78, 125414 (2008).

    Article  ADS  Google Scholar 

  36. A. Bayat, C. E. Creffield, J. H. Jefferson, M. Pepper, and S. Bose, Semicond. Sci. Technol. 30, 105025 (2015).

    Article  ADS  Google Scholar 

  37. B. Michaelis, C. Emary, and C. W. J. Beenakker, Europhys. Lett. 73, 677 (2006).

    Article  ADS  Google Scholar 

  38. C. Poltl, C. Emary, and T. Brandes, Phys. Rev. B 87, 045416 (2013).

    Article  ADS  Google Scholar 

  39. C. Emary, C. Poltl, and T. Brandes, Phys. Rev. B 80, 235321 (2009).

    Article  ADS  Google Scholar 

  40. C. Caroli, R. Combescot, D. Lederer-Rozenblatt, P. Nozières, and D. Saint-James, Phys. Rev. B 12, 3977 (1975).

    Article  ADS  Google Scholar 

  41. L. D. Contreras-Pulido, M. Bruderer, S. F. Huelga, and M. B. Plenio, New J. Phys. 16, 113061 (2014).

    Article  ADS  Google Scholar 

  42. Y. N. Chen, T. Brandes, C. M. Li, and D. S. Chuu, Phys. Rev. B 69, 245323 (2004).

    Article  ADS  Google Scholar 

  43. P. I. Arseyev and N. S. Maslova, Phys. Usp. 53, 1151 (2010).

    Article  ADS  Google Scholar 

  44. P. I. Arseyev and N. S. Maslova, Sov. Phys. JETP 102, 1056 (1992).

    Google Scholar 

  45. S. A. Gurvitz, Phys. Rev. B 57, 6602 (1998).

    Article  ADS  Google Scholar 

  46. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, JETP Lett. 95, 521 (2012).

    Article  ADS  Google Scholar 

  47. V. N. Mantsevich and N. S. Maslova, Solid State Commun. 150, 2072 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Mantsevich.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, N.S., Mantsevich, V.N. & Arseev, P.I. Spatial-symmetry-induced dark states and charge trapping effects in the coupled quantum dots. J. Exp. Theor. Phys. 122, 1084–1093 (2016). https://doi.org/10.1134/S1063776116060169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116060169

Navigation