Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback


We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. W. Tkach and A. R. Chraplyvy, IEEE J. Lightwave Technol. 4, 1655 (1986).

    ADS  Article  Google Scholar 

  2. 2.

    N. Schunk and K. Petermann, IEEE J. Quant. Electron. 24, 1242 (1988).

    ADS  Article  Google Scholar 

  3. 3.

    D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quant. Electron. 21, 674 (1985).

    ADS  Article  Google Scholar 

  4. 4.

    G. C. Dente, P. S. Durkin, K. A. Wilson, and C. E. Moeller, IEEE J. Quant. Electron. 24, 2441 (1988).

    ADS  Article  Google Scholar 

  5. 5.

    J. Sacher, W. Elsasser, and E. O. Gobel, Phys. Rev. Lett. 63, 2224 (1989).

    ADS  Article  Google Scholar 

  6. 6.

    B. Tromborg and J. Mork, IEEE Photon. Technol. Lett. 2, 549 (1990).

    ADS  Article  Google Scholar 

  7. 7.

    J. Mork, J. Mork, and B. Tromborg, Phys. Rev. Lett. 65, 1999 (1990).

    ADS  Article  Google Scholar 

  8. 8.

    S. Abdulrhmann, M. Yamada, and M. Ahmed, Int. J. Num. Model. 24, 218 (2011).

    Article  Google Scholar 

  9. 9.

    M. Ahmed, M. Yamada, and S. Abdulrhmann, Int. J. Num. Model. 22, 434 (2009).

    Article  Google Scholar 

  10. 10.

    S. Abdulrhmann, M. Ahmed, and M. Yamada, Proc. SPIE 4986, 1 (2003).

    Article  Google Scholar 

  11. 11.

    M. Ahmed and M. Yamada, J. Appl. Phys. 95, 7573 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    R. Lang and K. Kobayashi, IEEE J. Quant. Electron. 16, 347 (1980).

    ADS  Article  Google Scholar 

  13. 13.

    S. Abdulrhmann, M. Ahmed, T. Okamoto, et al., IEEE J. Sel. Top. Quantum Electron. 9, 265 (2003).

    Article  Google Scholar 

  14. 14.

    M. Ahmed, S. W. Z. Mahmoud, and M. Yamada, Int. J. Num. Model. 20, 117 (2007).

    Article  Google Scholar 

  15. 15.

    S. Abdulrhmann, Turk. J. Phys. 36, 225 (2012).

    Google Scholar 

  16. 16.

    M. Ahmed, A. Bakry, R. Altuwirqi, et al., Jpn. J. Appl. Phys. 52, 124103 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    M. Ahmed, A. Bakry, R. Altuwirqi, et al., J. Eur. Opt. Soc. 8, 130064 (2013).

    Article  Google Scholar 

  18. 18.

    G. P. Agrawal and T. M. Shen, J. Lightwave Technol. 4, 58 (1986).

    ADS  Article  Google Scholar 

  19. 19.

    Y. Hong, M. W. Leeand, and K. A. Shore, Proc. SPIE 5614, 72 (2004).

    ADS  Article  Google Scholar 

  20. 20.

    J. G. Wu, G. Q. Xia, and Z. M. Wu, Opt. Express 17, 20124 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    A. Toppens and U. Parlitz, Phys. Rev. E 78, 016210 (2008).

    ADS  Article  Google Scholar 

  22. 22.

    M. Ahmed, Physica D 176, 212 (2003).

    ADS  Article  Google Scholar 

  23. 23.

    M. Yamada, Theory of Semiconductor Lasers (Springer, Tokyo, 2014), Chaps. 6,8.

    Google Scholar 

  24. 24.

    M. Ahmed, S. W. Z. Mahmoud, and M. Yamada, Eur. Phys. J. D 41, 175104 (2012).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Ahmed.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakry, A., Abdulrhmann, S. & Ahmed, M. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback. J. Exp. Theor. Phys. 122, 960–969 (2016).

Download citation