Skip to main content
Log in

Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p y of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Popov, Sov. Phys. JETP 32, 526 (1971).

    ADS  Google Scholar 

  2. Ya. B. Zeldovich and V. S. Popov, Sov. Phys. Usp. 14, 673 (1972).

    Article  ADS  Google Scholar 

  3. S. S. Gershtein and V. S. Popov, Lett. Nuovo Cim. 6, 14 (1973).

    Article  Google Scholar 

  4. V. N. Oraevskii, A. I. Rex, and V. B. Semikoz, Sov. Phys. JETP 45, 428 (1977).

    ADS  Google Scholar 

  5. A. Calogeracos, N. Dombey, and K. Imagawa, Phys. At. Nucl. 59, 1275 (1996).

    Google Scholar 

  6. A. Shytov, M. Rudner, N. Gu, M. Katsnelson, and L. Levitov, Solid State Commun. 149, 1087 (2009).

    Article  ADS  Google Scholar 

  7. A. I. Milstein and I. S. Terekhov, Phys. Rev. B 81, 125419 (2010).

    Article  ADS  Google Scholar 

  8. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 6 (1983).

    Article  MathSciNet  Google Scholar 

  9. K. Landsteiner, Phys. Rev. B 89, 075124 (2014).

    Article  ADS  Google Scholar 

  10. T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998).

    Article  ADS  Google Scholar 

  11. D. S. Novikov and L. S. Levitov, Phys. Rev. Lett. 96, 036402 (2006).

    Article  ADS  Google Scholar 

  12. A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett. 101, 156804 (2008).

    Article  ADS  Google Scholar 

  13. T. Tudorovskiy, K. J. A. Reijnders, and M. I. Katsnelson, Phys. Scripta T 146, 014010 (2012).

    Article  ADS  Google Scholar 

  14. D. S. Miserev and M. V. Entin, J. Exp. Theor. Phys. 115, 694 (2012).

    Article  ADS  Google Scholar 

  15. K. J. A. Reijnders, T. Tudorovskiy, and M. I. Katsnelson, Ann. Phys. 333, 155 (2013).

    Article  ADS  Google Scholar 

  16. P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).

    Article  ADS  Google Scholar 

  17. V. V. Babikov, Sov. Phys. Usp. 10, 271 (1967).

    Article  ADS  Google Scholar 

  18. F. Calogero, Variable Phase Approach to Potential Scattering (Academic, New York, 1967).

    MATH  Google Scholar 

  19. M. I. Sobel, Nuovo Cim. A 65, 117 (1970).

    Article  ADS  Google Scholar 

  20. U. Landman, Phys. Rev. A 5, 1 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Ouerdane, M. J. Jamieson, D. Vrinceanu, and M. J. Cavagnero, J. Phys. B 36, 4055 (2003).

    Article  ADS  Google Scholar 

  22. N. Levinson and K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 25, 9 (1949).

    Google Scholar 

  23. M. Klaus, J. Math. Phys. 31, 182 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Hayashi, Progr. Theor. Phys. 35, 3 (1966).

    Google Scholar 

  25. R. L. Warnock, Phys. Rev. 131, 1320 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Dong, X. Hou, and Z. Ma, Phys. Rev. A 58, 2160 (1998).

    Article  ADS  Google Scholar 

  27. D. P. Clemence, Inverse Probl. 5, 269 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  28. Q. Lin, Eur. Phys. J. D 7, 515 (1999).

    Article  ADS  Google Scholar 

  29. A. Calogeracos and N. Dombey, Phys. Rev. Lett. 93, 180405 (2004).

    Article  ADS  Google Scholar 

  30. Z. Ma, S. Dong, and L. Wang, Phys. Rev. A 74, 012712 (2006).

    Article  ADS  Google Scholar 

  31. R. R. Hartmann, N. J. Robinson, and M. E. Portnoi, Phys. Rev. B 81, 245431 (2010).

    Article  ADS  Google Scholar 

  32. R. R. Hartmann and M. E. Portnoi, Phys. Rev. A 89, 012101 (2014).

    Article  ADS  Google Scholar 

  33. D. A. Stone, C. A. Downing, and M. E. Portnoi, Phys. Rev. B 86, 075464 (2012).

    Article  ADS  Google Scholar 

  34. H. Poincaré, On Curves Defined by Differential Equations (Gostekhizdat, Moscow, 1947) [in Russian].

    MATH  Google Scholar 

  35. M. G. Calkin, D. Kiang, and Y. Nogami, Am. J. Phys. 55, 737 (1987).

    Article  ADS  Google Scholar 

  36. B. H. J. McKellar and G. J. Stephenson, Jr., Phys. Rev. C 35, 2262 (1987).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Miserev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miserev, D.S. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem. J. Exp. Theor. Phys. 122, 1070–1083 (2016). https://doi.org/10.1134/S1063776116060066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116060066

Navigation