Skip to main content
Log in

Subtractive procedure for calculating the anomalous electron magnetic moment in QED and its application for numerical calculation at the three-loop level

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new subtractive procedure for canceling ultraviolet and infrared divergences in the Feynman integrals described here is developed for calculating QED corrections to the electron anomalous magnetic moment. The procedure formulated in the form of a forest expression with linear operators applied to Feynman amplitudes of UV-diverging subgraphs makes it possible to represent the contribution of each Feynman graph containing only electron and photon propagators in the form of a converging integral with respect to Feynman parameters. The application of the developed method for numerical calculation of two- and threeloop contributions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov and O. S. Parasyuk, Izv. Akad. Nauk SSSR 20, 585 (1956).

    MathSciNet  Google Scholar 

  2. K. Hepp, Comm. Math. Phys. 2, 301 (1966).

    Article  ADS  Google Scholar 

  3. V. A. Shcherbina, Available from VINITI, No. 38–64 (1964).

    Google Scholar 

  4. O. I. Zav’yalov and B. M. Stepanov, Sov. J. Nucl. Phys. 1, 658 (1965).

    Google Scholar 

  5. W. Zimmermann, Comm. Math. Phys. 15, 208 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  6. O. I. Zav’yalov, Renormalized Feynman Diagrams (Nauka, Moscow, 1979) [in Russian] (Renormalized Quantum Field Theory, Kluwer Academic Publishers, 1990)..

    Google Scholar 

  7. V. A. Smirnov, Renormatization and Asymptotic Expansions of Feynman’s Amplitudes (Mosk. Gos. Univ., Moscow, 1990; Birkhauser, Basel, 1991).

    Google Scholar 

  8. J. Mignaco and E. Remiddi, Nuovo Cim. A 60, 519 (1969).

    Article  ADS  Google Scholar 

  9. S. Weinberg, Phys. Rev. 140, B516 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Yennie, S. Frautschi, and H. Suura, Ann. Phys. 13, 379 (1961).

    Article  ADS  Google Scholar 

  11. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

    Google Scholar 

  12. P. de Celles, Phys. Rev. 121, 304 (1960).

    Google Scholar 

  13. D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, Phys. Rev. A 83, 052122 (2011).

    Article  ADS  Google Scholar 

  14. T. Aoyama, M. Hayakawa, T. Kinoshita, et al., Phys. Rev. Lett. 109, 111807 (2012).

    Article  ADS  Google Scholar 

  15. T. Aoyama, M. Hayakawa, T. Kinoshita, et al., Phys. Rev. D 91, 033006 (2015).

    Article  ADS  Google Scholar 

  16. J. Schwinger, Phys. Rev. 73, 416 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Schwinger, Phys. Rev. 76, 790 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Karplus and N. Kroll, Phys. Rev. 77, 536 (1950).

    Article  ADS  Google Scholar 

  19. A. Petermann, Helv. Phys. Acta 30, 407 (1957).

    Google Scholar 

  20. C. Sommerfeld, Phys. Rev. 107, 328 (1957).

    Article  ADS  Google Scholar 

  21. M. V. Terent’ev, Sov. Phys. JETP 16, 444 (1962).

    ADS  MathSciNet  Google Scholar 

  22. M. Levine and J. Wright, Phys. Rev. D 8, 3171 (1973).

    Article  ADS  Google Scholar 

  23. R. Carroll and Y.-P. Yao, Phys. Lett. B 48, 125 (1974).

    Article  ADS  Google Scholar 

  24. R. Carroll, Phys. Rev. D 12, 2344 (1975).

    Article  ADS  Google Scholar 

  25. P. Cvitanovic and T. Kinoshita, Phys. Rev. D 10, 4007 (1974).

    Article  ADS  Google Scholar 

  26. T. Kinoshita, Phys. Rev. Lett. 75, 4728 (1995).

    Article  ADS  Google Scholar 

  27. R. Barbieri, M. Caffo, and E. Remiddi, Lett. Nuovo Cim. 5, 769 (1972).

    Article  Google Scholar 

  28. D. Billi, M. Caffo, and E. Remiddi, Lett. Nuovo Cim. 4, 657 (1972).

    Article  Google Scholar 

  29. R. Barbieri and E. Remiddi, Phys. Lett. B 49, 468 (1974).

    Article  ADS  Google Scholar 

  30. R. Barbieri, M. Caffo, and E. Remiddi, Ref. TH. 1802-CERN (1974).

    Google Scholar 

  31. M. Levine and R. Roskies, Phys. Rev. D 9, 421 (1974).

    Article  ADS  Google Scholar 

  32. M. Levine, R. Perisho, and R. Roskies, Phys. Rev. D 13, 997 (1976).

    Article  ADS  Google Scholar 

  33. R. Barbieri, M. Caffo, E. Remiddi, et al., Nucl. Phys. B 144, 329 (1978).

    Article  ADS  Google Scholar 

  34. M. Levine, E. Remiddi, and R. Roskies, Phys. Rev. D 20, 2068 (1979).

    Article  ADS  Google Scholar 

  35. S. Laporta and E. Remiddi, Phys. Lett. B 265, 182 (1991).

    Article  ADS  Google Scholar 

  36. S. Laporta, Phys. Lett. B 343, 421 (1995).

    Article  ADS  Google Scholar 

  37. S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996).

    Article  ADS  Google Scholar 

  38. T. Kinoshita and W. Lindquist, Phys. Rev. Lett. 47, 1573 (1981).

    Article  ADS  Google Scholar 

  39. T. Aoyama, M. Hayakawa, T. Kinoshita, et al., Phys. Rev. D 78, 053005 (2008).

    Article  ADS  Google Scholar 

  40. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, et al., Phys. Rev. Lett. 106, 080801 (2011).

    Article  ADS  Google Scholar 

  41. P. Mohr, B. Taylor, and D. Newell, Rev. Mod. Phys. 84, 1527 (2012).

    Article  ADS  Google Scholar 

  42. A. L. Kataev, Phys. Rev. D 86, 013010 (2012).

    Article  ADS  Google Scholar 

  43. A. Kurz, T. Liu, P. Marquard, et al., Nucl. Phys. B 879, 1 (2014).

    Article  ADS  Google Scholar 

  44. L. Ts. Adzhemyan and M. V. Kompaniets, J. Phys.: Conf. Ser. 523, 012049 (2014).

    ADS  Google Scholar 

  45. P. Cvitanovic and T. Kinoshita, Phys. Rev. D 10, 3978 (1974).

    Article  ADS  Google Scholar 

  46. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1984; Wiley, New York, 1980).

    MATH  Google Scholar 

  47. T. Aoyama, M. Hayakawa, T. Kinoshita, et al., Nucl. Phys. B 740, 138 (2006).

    Article  ADS  Google Scholar 

  48. P. Cvitanovic and T. Kinoshita, Phys. Rev. D 10, 3991 (1974).

    Article  ADS  Google Scholar 

  49. A. Alexandrescu, The D Programming Language (Addison-Wesley, Reading, MA, 2010).

    MATH  Google Scholar 

  50. D. Defour and F. Dinechin, in Proceedings of the 1st International Congress of Mathematical Software, Beijing, China, 2002.

    MATH  Google Scholar 

  51. F. Jegerlehner and A. Nyffeler, Phys. Rep. 477, 1 (2009).

    Article  ADS  Google Scholar 

  52. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill College, New York, 1965).

    MATH  Google Scholar 

  53. T. Kinoshita and W. Lindquist, Phys. Rev. D 42, 636 (1990).

    Article  ADS  Google Scholar 

  54. T. Aoyama, M. Hayakawa, T. Kinoshita, et al., Phys. Rev. D 77, 053012 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Volkov.

Additional information

Original Russian Text © S.A. Volkov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 6, pp. 1164–1191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, S.A. Subtractive procedure for calculating the anomalous electron magnetic moment in QED and its application for numerical calculation at the three-loop level. J. Exp. Theor. Phys. 122, 1008–1031 (2016). https://doi.org/10.1134/S1063776116050113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116050113

Navigation