Skip to main content
Log in

Chemical potential dependence of particle ratios within a unified thermal approach

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after the hadronization takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. W. Heinz, Nucl. Phys. A 661, 140 (1999).

    Article  ADS  Google Scholar 

  2. F. Becattini, Z. Phys. C 69, 485 (1996)

    Article  Google Scholar 

  3. F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997)

    Article  Google Scholar 

  4. F. Becattini and G. Passaleva, Eur. Phys. J. C 23, 551 (2002)

    Article  ADS  Google Scholar 

  5. F. Becattini, Nucl. Phys. A 702, 336 (2002).

    Article  ADS  Google Scholar 

  6. J. Cleymans and K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)

    Article  ADS  Google Scholar 

  7. J. Cleymans and K. Redlich, Phys. Rev. C 60, 054908 (1999).

    Article  ADS  Google Scholar 

  8. B. Biedron and W. Broniowski, Phys. Rev. C 75, 054905 (2007).

    Article  ADS  Google Scholar 

  9. S. Uddin et al., J. Phys. G 39, 015012 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Uddin et al., Nucl. Phys. A 934, 121 (2015)

    Article  ADS  Google Scholar 

  11. S. Uddin et al., Adv. High Energy Phys. 2015, 154853 (2015)

    Article  Google Scholar 

  12. Riyaz Ahmed Bhat et al., Nucl. Phys. A 935, 43 (2015)

    Article  ADS  Google Scholar 

  13. Inamul Bashir et al., Int. J. Mod. Phys. A 30, 1550139 (2015), S. Uddin et al., arXiv: 1412.2663.

    Article  ADS  Google Scholar 

  14. J. Cleymans, J. Phys. G: Nucl. Part. Phys. 35, 044017 (2008)

    Article  ADS  Google Scholar 

  15. F. Becattini et al., Proc. Sci. CPOD07, 012 (2007).

    Google Scholar 

  16. O. Ristea (BRAHMS Collab.), Rom. Rep. Phys. 56, 659 (2004).

    Google Scholar 

  17. B. I. Abelev et al. (STAR Collab.), Phys. Rev. C 79, 034909 (2009).

    Article  ADS  Google Scholar 

  18. J. Cleymans, I. Kraus, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 74, 034903 (2006).

    Article  ADS  Google Scholar 

  19. B. B. Back et al. (PHOBOS Collab.), Phys. Rev. C 71, 021901 (2005).

    Article  ADS  Google Scholar 

  20. J. Cleymans, I. Kraus, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 74, 034903 (2006).

    Article  ADS  Google Scholar 

  21. A. Tawfik, E. Gamal, and A. G. Shalaby, Int. J. Mod. Phys. A 30, 1550131 (2015).

    Article  ADS  Google Scholar 

  22. B. I. Abelev et al. (STAR Collab.), Phys. Rev. C 79, 034909 (2009).

    Article  ADS  Google Scholar 

  23. M. M. Aggarwal et al. (STAR Collab.), Phys. Rev. C 83, 024901 (2011).

    Article  ADS  Google Scholar 

  24. P. Braun-Muzinger, J. Cleymans, H. Oeschler, and K. Redlich, Nucl. Phys. A 697, 902 (2002).

    Article  ADS  Google Scholar 

  25. J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Lett. B 615, 50 (2005).

    Article  ADS  Google Scholar 

  26. M. Mishra and C. P. Singh, Phys. Rev. C 78, 024910 (2008).

    Article  ADS  Google Scholar 

  27. C. Blume et al. (NA49 Collab.), J. Phys. G 31, S685 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bashir.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, I., Nanda, H. & Uddin, S. Chemical potential dependence of particle ratios within a unified thermal approach. J. Exp. Theor. Phys. 122, 1032–1037 (2016). https://doi.org/10.1134/S1063776116050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116050022

Navigation