Skip to main content
Log in

U(1) and SU(2) quantum dissipative systems: the Caldeira–Leggett Versus Ambegaokar–Eckern–Schön approaches

  • Special issue in honor of L.V. Keldysh’s 85th birthday Issue Editor: S. Tikhodeev
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the Caldeira–Leggett and Ambegaokar–Eckern–Schön approaches. Here, we recall the differences between them and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger, J. Math. Phys. 2, 407 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  2. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).

    MathSciNet  Google Scholar 

  3. A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999).

    Article  ADS  Google Scholar 

  4. A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge Univ. Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  5. A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge Univ. Press, Cambridge, 2010). Cambridge Books Online

    Book  MATH  Google Scholar 

  6. A. Schmid, J. Low Temp. Phys. 49, 609 (1982).

    Article  ADS  Google Scholar 

  7. C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, Berlin, Heidelberg, 2004).

    MATH  Google Scholar 

  8. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).

    Article  ADS  Google Scholar 

  9. V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982).

    Article  ADS  Google Scholar 

  10. U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. B 30, 6419 (1984).

    Article  ADS  Google Scholar 

  11. R. Landauer, Philos. Mag. 21 172, 863 (2015).

    Article  ADS  Google Scholar 

  12. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

    Article  ADS  Google Scholar 

  13. Y. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  14. Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  15. I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. B 62, 14886 (2000).

    Article  ADS  Google Scholar 

  16. I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys. Rep. 358, 309 (2002).

    Article  ADS  Google Scholar 

  17. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

    Article  ADS  Google Scholar 

  18. A. V. Andreev and A. Kamenev, Phys. Rev. Lett. 81, 3199 (1998).

    Article  ADS  Google Scholar 

  19. E. C. Stoner, Rep. Progr. Phys. 11, 43 (1947).

    Article  ADS  Google Scholar 

  20. M. Schechter, Phys. Rev. B 70, 024521 (2004).

    Article  ADS  Google Scholar 

  21. S. Schmidt, Y. Alhassid, and K. van Houcke, Europhys. Lett. 80, 47004 (2007).

    Article  ADS  Google Scholar 

  22. S. Schmidt and Y. Alhassid, Phys. Rev. Lett. 101, 207003 (2008).

    Article  ADS  Google Scholar 

  23. B. Nissan-Cohen, Y. Gefen, M. N. Kiselev, and I. V. Lerner, Phys. Rev. B 84, 075307 (2011).

    Article  ADS  Google Scholar 

  24. M. N. Kiselev and Y. Gefen, Phys. Rev. Lett. 96, 066805 (2006).

    Article  ADS  Google Scholar 

  25. A. U. Sharafutdinov, D. S. Lyubshin, and I. S. Burmistrov, Phys. Rev. B 90, 195308 (2014).

    Article  ADS  Google Scholar 

  26. D. S. Lyubshin, A. U. Sharafutdinov, and I. S. Burmistrov, Phys. Rev. B 89, 201304 (2014).

    Article  ADS  Google Scholar 

  27. Y. Alhassid and T. Rupp, Phys. Rev. Lett. 91, 056801 (2003).

    Article  ADS  Google Scholar 

  28. Y. Alhassid, T. Rupp, A. Kaminski, and L. I. Glazman, Phys. Rev. B 69, 115331 (2004).

    Article  ADS  Google Scholar 

  29. H. E. Türeci and Y. Alhassid, Phys. Rev. B 74, 165333 (2006).

    Article  ADS  Google Scholar 

  30. G. Billings, A. Douglas Stone, and Y. Alhassid, Phys. Rev. B 81, 205303 (2010).

    Article  ADS  Google Scholar 

  31. G. Usaj and H. U. Baranger, Phys. Rev. B 67, 121308 (2003).

    Article  ADS  Google Scholar 

  32. I. S. Burmistrov, Yu. Gefen, and M. N. Kiselev, JETP Lett. 92, 179 (2010).

    Article  ADS  Google Scholar 

  33. I. S. Burmistrov, Yu. Gefen, and M. N. Kiselev, Phys. Rev. B 85, 155311 (2012).

    Article  ADS  Google Scholar 

  34. B. Sothmann, J. König, and Yu. Gefen, Phys. Rev. Lett. 108, 166603 (2012).

    Article  ADS  Google Scholar 

  35. A. Saha, Yu. Gefen, I. Burmistrov, and A. Shnirman, and A. Altland, Ann. Phys. 327, 2543 (2012).

    Article  ADS  Google Scholar 

  36. A. Shnirman, Yu. Gefen, A. Saha, I. S. Burmistrov, M. N. Kiselev, and A. Altland, Phys. Rev. Lett. 114, 176806 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  37. T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).

    Article  ADS  Google Scholar 

  38. W. F. Brown, Phys. Rev. 130, 1677 (1963).

    Article  ADS  Google Scholar 

  39. Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).

    Article  ADS  Google Scholar 

  40. H. Katsura, A. V. Balatsky, Z. Nussinov, and N. Nagaosa, Phys. Rev. B 73, 212501 (2006).

    Article  ADS  Google Scholar 

  41. N. Bode, L. Arrachea, G. S. Lozano, T. S. Nunner, and F. von Oppen, Phys. Rev. B 85, 115440 (2012).

    Article  ADS  Google Scholar 

  42. A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, Phys. Rev. Lett. 101, 066601 (2008).

    Article  ADS  Google Scholar 

  43. D. M. Basko and M. G. Vavilov, Phys. Rev. B 79, 064418 (2009).

    Article  ADS  Google Scholar 

  44. A. G. Abanov and Ar. Abanov, Phys. Rev. B 65, 184407 (2002).

    Article  ADS  Google Scholar 

  45. G. E. Volovik, J. Phys. C: Solid State Phys. 20, L83 (1987).

    Article  ADS  Google Scholar 

  46. A. Altland, A. de Martino, R. Egger, and B. Narozhny, Phys. Rev. B 82, 115323 (2010).

    Article  ADS  Google Scholar 

  47. D. B. Gutman, A. D. Mirlin, and Yu. Gefen, Phys. Rev. B 71, 085118 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shnirman.

Additional information

Contribution for the JETP special issue in honor of L.V. Keldysh’s 85th birthday

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shnirman, A., Saha, A., Burmistrov, I.S. et al. U(1) and SU(2) quantum dissipative systems: the Caldeira–Leggett Versus Ambegaokar–Eckern–Schön approaches. J. Exp. Theor. Phys. 122, 576–586 (2016). https://doi.org/10.1134/S1063776116030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116030109

Keywords

Navigation