Skip to main content
Log in

Dependence of the specific energy of the β/α interface in the VT6 titanium alloy on the heating temperature in the interval 600–975°C

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The specific energy of interphase boundaries is an important characteristic of multiphase alloys, because it determines in many respects their microstructural stability and properties during processing and exploitation. We analyze variation of the specific energy of the β/α interface in the VT6 titanium alloy at temperatures from 600 to 975°C. Analysis is based on the model of a ledge interphase boundary and the method for computation of its energy developed by van der Merwe and Shiflet [33, 34]. Calculations use the available results of measurements of the lattice parameters of phases in the indicated temperature interval and their chemical composition. In addition, we take into account the experimental data and the results of simulation of the effect of temperature and phase composition on the elastic moduli of the α and β phases in titanium alloys. It is shown that when the temperature decreases from 975 to 600°C, the specific energy of the β/α interface increases from 0.15 to 0.24 J/m2. The main contribution to the interfacial energy (about 85%) comes from edge dislocations accommodating the misfit in direction [0001]α || [110]β. The energy associated with the accommodation of the misfit in directions \({\left[ {\bar 2110} \right]_\alpha }\left\| {{{\left[ {1\bar 11} \right]}_\beta }} \right.\) and \({\left[ {0\bar 110} \right]_\alpha }\left\| {{{\left[ {\bar 112} \right]}_\beta }} \right.\) due to the formation of “ledges” and tilt misfit dislocations is low and increases slightly upon cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Belov, M. Ya. Brun, S. G. Glazunov, et al., Physical Metallurgy of Titanium and its Alloys, Ed. by S. G. Glazunov and B. A. Kolachev (Metallurgiya, Moscow, 1992) [in Russian].

  2. G. Lütjering and J. C. Williams, Titanium — Engineering: Materials and Processes (Springer, Berlin, 2007).

    Google Scholar 

  3. U. Zwicker, Titanium and Titanium Alloys (Springer, Berlin, 1974; Metallurgiya, Moscow, 1979).

    Google Scholar 

  4. S. L. Semiatin and D. U. Furrer, in ASM Handbook, Fundamentals of Modeling for Metals Processing, Ed. by S. L. Semiatin and D. U. Furrer (ASM Int., Materials Park, OH, 2009), Vol. 22, p. 536.

  5. D. Banerjee and J. C. Williams, Acta Mater. 61, 844 (2013).

    Article  Google Scholar 

  6. S. Zherebtsov, G. Salishchev, and S. L. Semiatin, Philos. Mag. Lett. 90, 903 (2010).

    Article  ADS  Google Scholar 

  7. S. Suri, G. B. Viswanathan, T. Neeraj, et al., Acta Mater. 47, 1019 (1999).

    Article  Google Scholar 

  8. M. Cabibbo, S. Zherebtsov, S. Mironov, and G. Salishchev, J. Mater. Sci. 48, 1100 (2013).

    Article  ADS  Google Scholar 

  9. S. Zherebtsov, M. Murzinova, G. Salishchev, and S. L. Semiatin, Acta Mater. 59, 4138 (2011).

    Article  Google Scholar 

  10. S. V. Zherebtsov, Deform. Razrush. Mater., No. 10, 16 (2012).

    Google Scholar 

  11. S. Z. Bokshtein, Diffusion and Structure of Metals (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  12. M. I. Mazurski and G. A. Salishchev, Phys. Status Solidi B 188, 653 (1995).

    Article  ADS  Google Scholar 

  13. Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen (Elsevier Science, North-Holland, 1996), Vol. 2.

  14. Physical Metallurgy, Ed. by D. E. Laughlin and K. Hono (Elsevier, Amsterdam, 2014).

  15. A. Kelly and R. Nicholson, Precipitation Hardening (Pergamon, Oxford, 1963).

    Google Scholar 

  16. R. Shi, N. Ma, and Y. Wang, Acta Mater. 60, 4172 (2012).

    Article  Google Scholar 

  17. A. Dehghan-Manshadi and R. J. Dippenaar, Mater. Sci. Eng. A 528, 1833 (2011).

    Article  Google Scholar 

  18. E. V. Collings, The Physical Metallurgy of Titanium Alloys (American Society for Metals, Metals Park, OH, 1984).

    Google Scholar 

  19. T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, Mater. Trans. 45, 2776 (2004).

    Article  Google Scholar 

  20. J. H. van der Merwe, Proc. Phys. Soc. A 63, 616 (1950).

    Article  ADS  Google Scholar 

  21. V. M. Kosevich, V. M. Ievlev, L. S. Palatnik, and A. I. Fedorenko, Structure of Intercrystallite and Interphase Boundaries (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  22. A. Kelly and K. M. Knowles, Crystallographys and Crystal Defects (Wiley, New York, 2012).

    Book  Google Scholar 

  23. G. J. Shiflet, Mater. Sci. Eng. 81, 61 (1986).

    Article  Google Scholar 

  24. J. P. Hirth, G. Spannos, M. G. Hall, and H. I. Aaronson, Acta Mater. 46, 857 (1998).

    Article  Google Scholar 

  25. T. Furuhara, H. J. Lee, E. S. K. Menon, and H. I. Aaronson, Metall. Trans. A 21, 1627 (1990).

    Article  Google Scholar 

  26. T. Furuhara, T. Ogawa, and T. Maki, Philos. Mag. Lett. 72, 175 (1995).

    Article  ADS  Google Scholar 

  27. R. C. Pond, S. Celotto, and J. P. Hirth, Acta Mater. 51, 5385 (2003).

    Article  Google Scholar 

  28. R. C. Pond, X. Ma, Y. W. Chai, and J. P. Hirth, Dislocat. Solids 13, 225 (2007).

    Article  Google Scholar 

  29. S. Nag, R. Banerjee, R. Srinivasan, et al., Acta Mater. 57, 2136 (2009).

    Article  Google Scholar 

  30. T. Furuhara, J. M. Howe, and H. I. Aaronson, Acta Metall. Mater. 39, 2873 (1991).

    Article  Google Scholar 

  31. N. Miyano, K. Ameyama, and G. C. Weatherly, Mater. Trans. 43, 1547 (2002).

    Article  Google Scholar 

  32. M. G. Hall, H. I. Aaronson, and K. R. Kinsma, Surf. Sci. 31, 257 (1972).

    Article  ADS  Google Scholar 

  33. J. H. van der Merwe, G. J. Shiflet, and P. M. Stoop, Metall. Trans. A 22, 1165 (1991).

    Article  Google Scholar 

  34. J. H. van der Merwe and G. J. Shiflet, Acta Metal. Mater. 42, 1173 (1994).

    Article  Google Scholar 

  35. J. W. Elmer, T. A. Palmer, S. S. Babub, and E. D. Specht, Mater. Sci. Eng. A 391, 104 (2005).

    Article  Google Scholar 

  36. S. Malinov, W. Sha, Z. Guo, et al., Mater. Character. 48, 279 (2002).

    Article  Google Scholar 

  37. A. A. Il’in, V. M. Maistrov, and V. V. Zasypkin, Metallofizika 8 (6), 112 (1986).

    Google Scholar 

  38. O. N. Senkov, B. C. Chakoumakos, J. J. Jonas, and F. H. Froes, Mater. Res. Bull. 36, 1431 (2001).

    Article  Google Scholar 

  39. P. Barriobero-Vila, G. Requena, T. Buslaps, et al., J. Alloys Compd. 626, 330 (2015).

    Article  Google Scholar 

  40. A. K. Swarnakar, O. van der Biest, and B. Baufeld, J. Alloys Compd. 509, 2723 (2011).

    Article  Google Scholar 

  41. A. A. Il’in, M. Yu. Kollerov, V. V. Zasypkin, and V. M. Maistrov, Metalloved. Termich. Obrab. Met., No. 1, 52 (1986).

    Google Scholar 

  42. E. S. Fisher and C. J. Renken, Phys. Rev. A 135, 482 (1964).

    Article  ADS  Google Scholar 

  43. H. Ogi, S. Kai, H. Ledbetter, et al., Acta Mater. 52, 2075 (2004).

    Article  Google Scholar 

  44. O. N. Senkov, M. Dubois, and J. J. Jonas, Metall. Mater. Trans. A 27, 3963 (1996).

    Article  Google Scholar 

  45. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon, Oxford, 1982).

    Google Scholar 

  46. R. G. Hennig, T. J. Lenosky, D. R. Trinkle, et al., Phys. Rev. B 78, 054121 (2008).

    Article  ADS  Google Scholar 

  47. A. M. Stapleton, S. L. Raghunathan, I. Bantounas, et al., Acta Mater. 56, 6186 (2008).

    Article  Google Scholar 

  48. J. L. W. Warwick, J. Coakley, S. L. Raghunathan, et al., Acta Mater. 60, 4117 (2012).

    Article  Google Scholar 

  49. E. S. Fisher and D. Dever, in Science, Technology and Application of Titanium, Ed. by R. I. Jaffee and N. E. Promisel (Pergamon, Oxford, UK, 1968), p. 373.

  50. H. Ledbetter, H. Ogi, S. Kai, et al., J. Appl. Phys. 95, 4642 (2004).

    Article  ADS  Google Scholar 

  51. W. Petry, A. Heimig, J. Trampenau, et al., Phys. Rev. B 43, 10933 (1991).

    Article  ADS  Google Scholar 

  52. T. D. Shermergor, The Theory of Elasticity for Micro-Nonhomogeneous Media (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  53. W. Sha and S. Malinov, Titanium Alloys: Modelling of Microstructure, Properties and Applications (Woodhead, CRC Press, Boca Raton, FL, 2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Murzinova.

Additional information

Original Russian Text © M.A. Murzinova, S.V. Zherebtsov, G.A. Salishchev, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 4, pp. 815–826.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzinova, M.A., Zherebtsov, S.V. & Salishchev, G.A. Dependence of the specific energy of the β/α interface in the VT6 titanium alloy on the heating temperature in the interval 600–975°C. J. Exp. Theor. Phys. 122, 705–715 (2016). https://doi.org/10.1134/S1063776116020205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116020205

Keywords

Navigation