Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

Abstract

The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO)5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO)5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO)5] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO)5] n clusters have been estimated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. S. Letokhov, Nonlinear Selective Photoprocesses in Atoms and Molecules (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  2. 2.

    V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood Academic, Chur, 1985).

    Google Scholar 

  3. 3.

    D. W. Lupo and M. Quack, Chem. Rev. 87, 181 (1987).

    Article  Google Scholar 

  4. 4.

    Laser Spectroscopy of Highly Vibrationally Excited Molecules, Ed. by V. S. Letokhov (Adam Hilger, Bristol, 1989).

  5. 5.

    K. K. Lehmann, G. Scoles, and B. H. Pate, Ann. Rev. Phys. Chem. 45, 241 (1994).

    ADS  Article  Google Scholar 

  6. 6.

    D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100, 12735 (1996).

    Article  Google Scholar 

  7. 7.

    A. A. Makarov, A. L. Malinovsky, and E. A. Ryabov, Phys. Usp. 55, 977 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    H. S. Yoo, D. A. McWhorter, and B. H. Pate, J. Phys. Chem. A 108, 131380 (2004).

    Google Scholar 

  9. 9.

    A. L. Malinovsky, A. A. Makarov, and E. A. Ryabov, JETP Lett. 80, 532 (2004).

    ADS  Article  Google Scholar 

  10. 10.

    A. L. Malinovsky, Yu. S. Doljikov, A. A. Makarov, et al., Chem. Phys. Lett. 419, 511 (2006).

    ADS  Article  Google Scholar 

  11. 11.

    S. V. Chekalin, V. O. Kompanets, P. V. Koshlyakov, et al., J. Phys. Chem. A 118, 955 (2014).

    Article  Google Scholar 

  12. 12.

    H. Pauly, Atom, Molecule and Cluster Beams II (Springer, New York, 2000).

    Google Scholar 

  13. 13.

    Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford Univ. Press, New York, 1988), Vol. 1.

  14. 14.

    Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford Univ. Press, New York, 1992), Vol. 2.

  15. 15.

    U. Buck, J. Phys. Chem. 92, 1023 (1988).

    Article  Google Scholar 

  16. 16.

    V. N. Lokhman, D. D. Ogurok, and E. A. Ryabov, Chem. Phys. 333, 85 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    V. N. Lokhman, D. D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 108, 727 (2009).

    ADS  Article  Google Scholar 

  18. 18.

    V. M. Apatin, V. N. Lokhman, D. D. Ogurok, et al., Eur. Phys. J. D 67, 66 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    D. G. Poydashev, V. N. Lokhman, V. O. Kompanets, et al., J. Phys. Chem. A 118, 11177 (2014).

    Article  Google Scholar 

  20. 20.

    M. K. Au, P. A. Hackett, M. Humphries, and P. John, Appl. Phys. B 33, 43 (1984).

    ADS  Article  Google Scholar 

  21. 21.

    L. Windhorn, T. Witte, J. S. Yeston, et al., Chem. Phys. Lett. 357, 85 (2002).

    ADS  Article  Google Scholar 

  22. 22.

    V. M. Apatin, V. O. Kompanets, V. N. Lokhman, N.-D. D. Ogurok, D. G. Poydashev, E. A. Ryabov, and S. V. Chekalin, J. Exp. Theor. Phys. 115, 567 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    O. F. Hagena, Rev. Sci. Instrum. 63, 2374 (1992).

    ADS  Article  Google Scholar 

  24. 24.

    L. Banares, T. Baumert, M. Berg, et al., J. Chem. Phys. 108, 5799 (1998).

    ADS  Article  Google Scholar 

  25. 25.

    C. W. F. T. Pistorius and P. C. Haarhoff, J. Chem. Phys. 31, 1439 (1959).

    ADS  Article  Google Scholar 

  26. 26.

    M. Dartiguenave, Y. Dartiguenave, and H. B. Gray, Bull. Soc. Chim. Fr. 12, 4223 (1966).

    Google Scholar 

  27. 27.

    S. Yan, M. T. Seidel, Z. Zhang, et al., J. Chem. Phys. 135, 024501 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    J. Cahoon, K. Sawyer, J. Schlegel, and C. Harris, Science 319, 1820 (2008).

    ADS  Article  Google Scholar 

  29. 29.

    A. Laubereau and W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).

    ADS  Article  Google Scholar 

  30. 30.

    M. Banno, K. Iwata, and H. Hamaguchi, J. Chem. Phys. 126, 204501 (2007).

    ADS  Article  Google Scholar 

  31. 31.

    J. Gspann, Z. Phys. D 3, 143 (1986).

    ADS  Article  Google Scholar 

  32. 32.

    C. E. Klots, Z. Phys. D 21, 335 (1991).

    ADS  Article  Google Scholar 

  33. 33.

    G. N. Makarov, Phys. Usp. 54, 351 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    C. E. Klots, Z. Phys. D 20, 105 (1991).

    ADS  Article  Google Scholar 

  35. 35.

    A. A. Vostrikov and D. Yu. Dubov, J. Exp. Theor. Phys. 98, 197 (2004).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to D. G. Poydashev or E. A. Ryabov.

Additional information

Original Russian Text © V.O. Kompanets, V.N. Lokhman, D.G. Poydashev, S.V. Chekalin, E.A. Ryabov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 4, pp. 723–736.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kompanets, V.O., Lokhman, V.N., Poydashev, D.G. et al. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl. J. Exp. Theor. Phys. 122, 621–632 (2016). https://doi.org/10.1134/S1063776116020199

Download citation

Keywords

  • Probe Pulse
  • Free Molecule
  • Resonant Excitation
  • Multiphoton Ionization
  • Cluster Beam