Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

Atoms, Molecules, Optics

Abstract

The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO)5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO)5+ molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO)5]n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the “evaporation ensemble” concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO)5]n clusters have been estimated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Letokhov, Nonlinear Selective Photoprocesses in Atoms and Molecules (Nauka, Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A. Ryabov, Multiple Photon Infrared Laser Photophysics and Photochemistry (Harwood Academic, Chur, 1985).Google Scholar
  3. 3.
    D. W. Lupo and M. Quack, Chem. Rev. 87, 181 (1987).CrossRefGoogle Scholar
  4. 4.
    Laser Spectroscopy of Highly Vibrationally Excited Molecules, Ed. by V. S. Letokhov (Adam Hilger, Bristol, 1989).Google Scholar
  5. 5.
    K. K. Lehmann, G. Scoles, and B. H. Pate, Ann. Rev. Phys. Chem. 45, 241 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    D. J. Nesbitt and R. W. Field, J. Phys. Chem. 100, 12735 (1996).CrossRefGoogle Scholar
  7. 7.
    A. A. Makarov, A. L. Malinovsky, and E. A. Ryabov, Phys. Usp. 55, 977 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    H. S. Yoo, D. A. McWhorter, and B. H. Pate, J. Phys. Chem. A 108, 131380 (2004).Google Scholar
  9. 9.
    A. L. Malinovsky, A. A. Makarov, and E. A. Ryabov, JETP Lett. 80, 532 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    A. L. Malinovsky, Yu. S. Doljikov, A. A. Makarov, et al., Chem. Phys. Lett. 419, 511 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    S. V. Chekalin, V. O. Kompanets, P. V. Koshlyakov, et al., J. Phys. Chem. A 118, 955 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Pauly, Atom, Molecule and Cluster Beams II (Springer, New York, 2000).Google Scholar
  13. 13.
    Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford Univ. Press, New York, 1988), Vol. 1.Google Scholar
  14. 14.
    Atomic and Molecular Beam Methods, Ed. by G. Scoles (Oxford Univ. Press, New York, 1992), Vol. 2.Google Scholar
  15. 15.
    U. Buck, J. Phys. Chem. 92, 1023 (1988).CrossRefGoogle Scholar
  16. 16.
    V. N. Lokhman, D. D. Ogurok, and E. A. Ryabov, Chem. Phys. 333, 85 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    V. N. Lokhman, D. D. Ogurok, and E. A. Ryabov, J. Exp. Theor. Phys. 108, 727 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    V. M. Apatin, V. N. Lokhman, D. D. Ogurok, et al., Eur. Phys. J. D 67, 66 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    D. G. Poydashev, V. N. Lokhman, V. O. Kompanets, et al., J. Phys. Chem. A 118, 11177 (2014).CrossRefGoogle Scholar
  20. 20.
    M. K. Au, P. A. Hackett, M. Humphries, and P. John, Appl. Phys. B 33, 43 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    L. Windhorn, T. Witte, J. S. Yeston, et al., Chem. Phys. Lett. 357, 85 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    V. M. Apatin, V. O. Kompanets, V. N. Lokhman, N.-D. D. Ogurok, D. G. Poydashev, E. A. Ryabov, and S. V. Chekalin, J. Exp. Theor. Phys. 115, 567 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    O. F. Hagena, Rev. Sci. Instrum. 63, 2374 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    L. Banares, T. Baumert, M. Berg, et al., J. Chem. Phys. 108, 5799 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    C. W. F. T. Pistorius and P. C. Haarhoff, J. Chem. Phys. 31, 1439 (1959).ADSCrossRefGoogle Scholar
  26. 26.
    M. Dartiguenave, Y. Dartiguenave, and H. B. Gray, Bull. Soc. Chim. Fr. 12, 4223 (1966).Google Scholar
  27. 27.
    S. Yan, M. T. Seidel, Z. Zhang, et al., J. Chem. Phys. 135, 024501 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    J. Cahoon, K. Sawyer, J. Schlegel, and C. Harris, Science 319, 1820 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    A. Laubereau and W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).ADSCrossRefGoogle Scholar
  30. 30.
    M. Banno, K. Iwata, and H. Hamaguchi, J. Chem. Phys. 126, 204501 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    J. Gspann, Z. Phys. D 3, 143 (1986).ADSCrossRefGoogle Scholar
  32. 32.
    C. E. Klots, Z. Phys. D 21, 335 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    G. N. Makarov, Phys. Usp. 54, 351 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    C. E. Klots, Z. Phys. D 20, 105 (1991).ADSCrossRefGoogle Scholar
  35. 35.
    A. A. Vostrikov and D. Yu. Dubov, J. Exp. Theor. Phys. 98, 197 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Institute of SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations