Advertisement

Journal of Experimental and Theoretical Physics

, Volume 122, Issue 2, pp 384–388 | Cite as

Exact results on diffusion in a piecewise linear potential with a time-dependent sink

  • Diwaker
  • Aniruddha Chakraborty
Statistical, Nonlinear, and Soft Matter Physics
  • 52 Downloads

Abstract

The Smoluchowski equation with a time-dependent sink term is solved exactly. In this method, knowing the probability distribution P(0, s) at the origin, allows deriving the probability distribution P(x, s) at all positions. Exact solutions of the Smoluchowski equation are also provided in different cases where the sink term has linear, constant, inverse, and exponential variation in time.

Keywords

Probability Distribution Function Exact Result Sink Term Smoluchowski Equation Exponential Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Risken, The Fokker–Planck Equation (Springer, Berlin, 1984).zbMATHGoogle Scholar
  2. 2.
    A. Samanta and S. K. Ghosh, J. Chem. Phys. 97, 9321 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    K. L. Sebastain, Phys. Rev. A 46, R1732 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    B. Bagchi, J. Chem. Phys. 87, 5393 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Rice, Diffusion-Limited Reactions, Vol. 25, Ed. by C. H. Bamford, C. F. H. Tipper, and R. O. Compton (Elseiver, Amsterdam, 1985).Google Scholar
  6. 6.
    G. Wilemsky and M. Fixman, J. Chem. Phys. 84, 4894 (1986).CrossRefGoogle Scholar
  7. 7.
    G. Wilemsky and M. Fixman, J. Chem. Phys. 60, 878 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    M. Ya. Ovchinnikova, Teor. Eksp. Khim. 17, 651 (1981).Google Scholar
  9. 9.
    L. D. Zusman, Chem. Phys. 80, 29 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    R. A. Marcus, J. Chem. Phys. 105, 5446 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    H. Sumi, J. Mol. Liq. 65/66, 65 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    B. Bagchi, G. R. Fleming, and D. W. Oxtoby, J. Chem. Phys. 78, 7375 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    B. Bagchi and G. R. Fleming, J. Phys. Chem. 94, 9 (1984).CrossRefGoogle Scholar
  15. 15.
    A. Chakraborty, J. Chem. Phys. 139, 094101 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    J. Campbell, J. Phys. A 42, 365212 (2009).MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.School of Physical and Astronomical SciencesCentral University of Himachal PradeshKangra (Shahpur)India
  2. 2.Indian Institute of Technology MandiMandiIndia

Personalised recommendations