Skip to main content
Log in

Multifractality and quantum diffusion from self-consistent theory of localization

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Multifractal properties of wave functions in a disordered system can be derived from self-consistent theory of localization by Vollhardt and Wölfle. A diagrammatic interpretation of results allows to obtain all scaling relations used in numerical experiments. The arguments are given that the one-loop Wegner result for a space dimension d = 2 + ϵ is exact, so the multifractal spectrum is strictly parabolical. The σ-models are shown to be deficient at the four-loop level and the possible reasons of that are discussed. The extremely slow convergence to the thermodynamic limit is demonstrated. The open question on the relation between multifractality and a spatial dispersion of the diffusion coefficient D(ω, q) is resolved in the compromise manner due to ambiguity of the D(ω, q) definition. Comparison is made with the extensive numerical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Suslov, J. Exp. Theor. Phys. 114 (1), 107 (2012).

    Article  ADS  Google Scholar 

  2. I. M. Suslov, J. Exp. Theor. Phys. 115 (5), 897 (2012).

    Article  ADS  Google Scholar 

  3. I. M. Suslov, J. Exp. Theor. Phys. 115 (6), 1079 (2012).

    Article  ADS  Google Scholar 

  4. I. M. Suslov, J. Exp. Theor. Phys. 118 (6), 909 (2014).

    Article  ADS  Google Scholar 

  5. I. M. Suslov, J. Exp. Theor. Phys. 119 (6), 1115 (2014).

    Article  ADS  Google Scholar 

  6. P. Markos, Acta Phys. Slovaca 56, 561 (2006), P. Markos, arXiv:cond-mat/0609580.

    Article  ADS  Google Scholar 

  7. D. Vollhardt and P. Wölfle, Phys. Rev. B: Condens. Matter 22, 4666 (1980)

    Article  ADS  Google Scholar 

  8. D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 48, 699 (1982).

    Article  ADS  Google Scholar 

  9. H. Kunz and R. Souillard, J. Phys., Lett. 44, L506 (1983).

    Google Scholar 

  10. I. M. Suslov, J. Exp. Theor. Phys. 81 (5), 925 (1995).

    ADS  Google Scholar 

  11. F. Wegner, Nucl. Phys. B 316, 663 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. T. Chalker, Physica A (Amsterdam) 167, 253 (1990).

    Article  ADS  Google Scholar 

  13. T. Brandes, B. Huckestein, and L. Schweitzer, Ann. Phys. 508 (8), 633 (1996).

    Article  Google Scholar 

  14. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  15. I. M. Suslov, arXiv:cond-mat/0612654.

  16. A. Kawabata, arXiv:cond-mat/0104289.

  17. A. M. Garcia-Garcia, Phys. Rev. Lett. 100, 076404 (2008).

    Article  ADS  Google Scholar 

  18. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1976; Wiley, New York, 1980).

    MATH  Google Scholar 

  19. F. Wegner, Z. Phys. B: Condens. Matter 25, 327 (1976).

    Article  ADS  Google Scholar 

  20. B. Shapiro and E. Abrahams, Phys. Rev. B: Condens. Matter 24, 4889 (1981).

    Article  ADS  Google Scholar 

  21. S. Hikami, Phys. Rev. B: Condens. Matter 24, 2671 (1981).

    Article  ADS  Google Scholar 

  22. P. Lambrianides and H. B. Shore, Phys. Rev. B: Condens. Matter 50, 7268 (1994).

    Article  ADS  Google Scholar 

  23. M. L. Mehta, Random Matrices (Elsevier/Academic Press, Amsterdam, The Netherlands, 2004).

    MATH  Google Scholar 

  24. D. Belitz, Solid State Commun. 52, 989 (1984)

    Article  ADS  Google Scholar 

  25. E. Z. Kuchinskii and M. V. Sadovskii, Sverkhprovodimost: Fiz., Khim., Tekh. 4, 2278 (1991).

    Google Scholar 

  26. E. Z. Kuchinskii, M. V. Sadovskii, V. G. Suvorov, and M. A. Erkabaev, J. Exp. Theor. Phys. 80 (6), 1122 (1995).

    ADS  Google Scholar 

  27. E. Hofstetter, arXiv:cond-mat/9611060.

  28. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997).

    Article  ADS  Google Scholar 

  29. T. Terao, Phys. Rev. B: Condens. Matter 56, 975 (1997).

    Article  ADS  Google Scholar 

  30. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).

    Article  ADS  Google Scholar 

  31. S. Waffenschmidt, C. Pfleiderer, and H. V. Loehneysen, Phys. Rev. Lett. 83, 3005 (1999).

    Article  ADS  Google Scholar 

  32. N. G. Zhdanova, M. S. Kagan, and E. G. Landsberg, J. Exp. Theor. Phys. 90 (4), 662 (2000).

    Article  ADS  Google Scholar 

  33. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 111, 066601 (2013).

    Article  ADS  Google Scholar 

  34. A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Romer, Phys. Rev. B: Condens. Matter 84, 134209 (2011).

    Article  ADS  Google Scholar 

  35. M. V. Sadovskii, Diagrammatics: Lectures on Selected Problems of Condensed Matter Theory (Institute for Electrophysics of the Russian Academy of Sciences, Yekaterinburg, Moscow, 2004; World Scientific, Singapore, 2007).

    MATH  Google Scholar 

  36. M. V. Feigelman, L. B. Ioffe, V. E. Kravtsov, and E. Cuevas, Ann. Phys. (NY) 325, 1368 (2010).

    Google Scholar 

  37. I. M. Suslov, Phys.—Usp. 41 (5), 441 (1998).

    Article  ADS  Google Scholar 

  38. A. M. Mildenberger, F. Evers, and A. D. Mirlin, Phys. Rev. B: Condens. Matter 66, 033109 (2002).

    Article  ADS  Google Scholar 

  39. H. Grussbach and M. Schreiber, Phys. Rev. B: Condens. Matter 51, 663 (1995).

    Article  ADS  Google Scholar 

  40. F. Evers, A. M. Mildenberger, and A. D. Mirlin, Phys. Rev. Lett. 101, 116803 (2008).

    Article  ADS  Google Scholar 

  41. M. Zirnbauer, arXiv:hep-th/9905054.

  42. M. J. Bhaseen, I. I. Kogan, O. A. Soloviev, N. Taniguchi, and A. M. Tsvelik, Nucl. Phys. B 580 (3), 688 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. M. Tsvelik, Phys. Rev. B: Condens. Matter 75, 184201 (2007).

    Article  ADS  Google Scholar 

  44. I. M. Suslov, arXiv:1412.5339.

  45. J. Brndiar and P. Markos, Phys. Rev. B: Condens. Matter 74, 153103 (2006).

    Article  ADS  Google Scholar 

  46. K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999).

    Article  ADS  Google Scholar 

  47. I. M. Suslov, arXiv:cond-mat/0105325.

  48. E. Cuevas and V. E. Kravtsov, Phys. Rev. B: Condens. Matter 76, 235119 (2007).

    Article  ADS  Google Scholar 

  49. M. Schreiber, Physica A (Amsterdam) 167, 188 (1990).

    Article  ADS  Google Scholar 

  50. C. M. Soukoulis and E. N. Economou, Phys. Rev. Lett. 52, 565 (1984).

    Article  ADS  Google Scholar 

  51. S. N. Evangelou, Physica A (Amsterdam) 167, 199 (1990).

    Article  ADS  Google Scholar 

  52. M. Schreiber and H. Grussbach, Phys. Rev. Lett. 67, 607 (1991).

    Article  ADS  Google Scholar 

  53. A. Rodriguez, L. J. Vasquez, and R. A. Romer, Phys. Rev. Lett. 102, 106406–4 (2009).

    Article  ADS  Google Scholar 

  54. A. Rodriguez, L. J. Vasquez, and R. A. Romer, Phys. Rev. B: Condens. Matter 78, 195107 (2008).

    Article  ADS  Google Scholar 

  55. G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, arXiv:1005.1540.

  56. V. E. Kravtsov, I. V. Lerner, and V. I. Yudson, Sov. Phys. JETP 67 (7), 1441 (1988).

    MathSciNet  Google Scholar 

  57. F. Wegner, Z. Phys. B: Condens. Matter 78, 33 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  58. P. K. Mitter and H. R. Ramadas, Commun. Math. Phys. 122, 575 (1989).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Suslov.

Additional information

Original Russian Text © I.M. Suslov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 1012–1030.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslov, I.M. Multifractality and quantum diffusion from self-consistent theory of localization. J. Exp. Theor. Phys. 121, 885–901 (2015). https://doi.org/10.1134/S1063776115110096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110096

Keywords

Navigation