Skip to main content
Log in

Short-range order and dynamics of atoms in liquid gallium

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The features of the microscopic structure, as well as one-particle and collective dynamics of liquid gallium in the temperature range from T = 313 to 1273 K, are studied on the p = 1.0 atm isobar. Detailed analysis of the data on diffraction of neutrons and X-rays, as well as the results of atomic dynamics simulation, lead to some conclusions about the structure. In particular, for preset conditions, gallium is in the equilibrium liquid phase showing no features of any stable local crystalline clusters. The pronounced asymmetry of the principle peak of the static structure factor and the characteristic “shoulder” in its right-hand part appearing at temperatures close to the melting point, which are clearly observed in the diffraction data, are due to the fact that the arrangement of the nearest neighbors of an arbitrary atom in the system is estimated statistically from the range of correlation length values and not by a single value as in the case of simple liquids. Compactly located dimers with a very short bond make a significant contribution to the statistics of nearest neighbors. The temperature dependence of the self-diffusion coefficient calculated from atomic dynamics simulation agrees well with the results obtained from experimental spectra of the incoherent scattering function. Interpolation of the temperature dependence of the self-diffusion coefficient on a logarithmic scale reveals two linear regions with a transition temperature of about 600 K. The spectra of the dynamic structure factor and spectral densities of the local current calculated by simulating the atomic dynamics indicate the existence of acoustic vibrations with longitudinal and transverse polarizations in liquid gallium, which is confirmed by experimental data on inelastic scattering of neutrons and X-rays. It is found that the vibrational density of states is completely reproduced by the generalized Debye model, which makes it possible to decompose the total vibrational motion into individual contributions associated with the formation of acoustic waves with longitudinal and transverse polarizations. Comparison of the heights of the low-frequency component and of the high-frequency peak in the spectral density of vibrational states also indicates a temperature of T ≈ 600 K, at which the diffusion type of one-particle dynamics changes to the vibrational type upon a decrease in temperature. It is demonstrated that the modified Einstein–Stokes relation can be derived using the generalized Debye model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. W. Ashcroft, Sci. Am. 221 (1), 72 (1969).

    Article  ADS  Google Scholar 

  2. T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1993).

    Google Scholar 

  3. A. G. Lyapin, E. L. Gromnitskaya, O. F. Yagafarov, O. V. Stal’gorova, and V. V. Brazhkin, J. Exp. Theor. Phys. 107 (5), 818 (2008).

    Article  ADS  Google Scholar 

  4. A. H. Narten, J. Chem. Phys. 56, 1185 (1972).

    Article  ADS  Google Scholar 

  5. Y. Waseda and K. Suzuki, Phys. Status Solidi B 49, 339 (1972).

    Article  ADS  Google Scholar 

  6. M. C. Bellissent-Funel, P. Chieux, D. Levesque, and J. J. Weis, Phys. Rev. A 39, 6310 (1989).

    Article  ADS  Google Scholar 

  7. O. F. Yagafarov, Y. Katayama, V. V. Brazhkin, A. G. Lyapin, and H. Saitoh, Phys. Rev. B: Condens. Matter 86, 174103 (2012).

    Article  ADS  Google Scholar 

  8. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955; Nauka, Leningrad, 1975).

    MATH  Google Scholar 

  9. S. F. Tsay and S. Wang, Phys. Rev. B: Condens. Matter 50, 108 (1994).

    Article  ADS  Google Scholar 

  10. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, Europhys. Lett. 21, 469 (1993).

    Article  ADS  Google Scholar 

  11. V. M. Nield, R. L. McGreevy, and M. G. Tucker, J. Phys.: Condens. Matter 10, 3293 (1998).

    ADS  Google Scholar 

  12. J. Yang, J. S. Tse, and T. Iitaka, J. Chem. Phys. 135, 044507 (2011).

    Article  ADS  Google Scholar 

  13. K. H. Tsai, T.-M. Wu, and S. F. Tsay, J. Chem. Phys. 132, 034502 (2010).

    Article  ADS  Google Scholar 

  14. T. E. Faber, An Introduction to the Theory of Liquid Metals (Cambridge University Press, Cambridge, 1972).

    Google Scholar 

  15. A. V. Mokshin, Theor. Math. Phys. 183 (1), 449 (2015).

    Article  MathSciNet  Google Scholar 

  16. A. V. Mokshin, R. M. Yulmetyev R. M. Khusnutdinov, and P. Hänggi, J. Exp. Theor. Phys. 103 (3), 841 (2006).

    Article  ADS  Google Scholar 

  17. R. M. Khusnutdinov, A. V. Mokshin, and R. M. Yul’met’ev, J. Exp. Theor. Phys. 108 (3), 417 (2009).

    Article  ADS  Google Scholar 

  18. R. M. Khusnutdinoff, and A. V. Mokshin, JETP Lett. 100 (1), 39 (2014).

    Article  ADS  Google Scholar 

  19. N. I. Eremin, Gallium (Metallurgiya, Moscow, 1964) [in Russian].

    Google Scholar 

  20. M. K. Lee, C. Tien, E. V. Charnaya, H. S. Sheu, and Y. A. Kumzerov, Phys. Lett. A 374, 1570 (2010).

    Article  ADS  Google Scholar 

  21. N. C. Chen and S. K. Lai, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 56, 4381 (1997).

    Article  Google Scholar 

  22. S. F. Tsay, Phys. Rev. B: Condens. Matter 48, 5945 (1993).

    Article  ADS  Google Scholar 

  23. R. M. Khusnutdinov and A. V. Mokshin, Bull. Russ. Acad. Sci.: Phys. 74 (5), 640 (2010).

    Article  Google Scholar 

  24. V. N. Ryzhov, E. E. Tareeva, T. I. Shchelkacheva, and N. M. Shchelkachev, Theor. Math. Phys. 141 (1), 1443 (2004).

    Article  MathSciNet  Google Scholar 

  25. R. M. Khusnutdinoff, A. V. Mokshin, and I. I. Khadeev, J. Phys.: Conf. Ser. 394, 012012 (2012).

    ADS  Google Scholar 

  26. R. M. Khusnutdinov, A. V. Mokshin, and I. I. Khadeev, J. Surf. Invest. 8 (1), 84 (2014).

    Article  Google Scholar 

  27. I. Padureanu, A. Radulescu, A. Beldiman, M. Ion, A. G. Novikov, V. V. Savostin, and Zh. A. Kozlov, Physica B (Amsterdam) 276–278, 459 (2000).

    Article  Google Scholar 

  28. N. M. Blagoveshchenskii, V. A. Morozov, A. G. Novikov, V. V. Savostin, and A. L. Shimkevich, Poverkhnost 6, 10 (2006).

    Google Scholar 

  29. T. Scopigno, A. Filipponi, M. Krisch, G. Monaco, G. Ruocco, and F. Sette, Phys. Rev. Lett. 89, 255506 (2002).

    Article  ADS  Google Scholar 

  30. L. E. Bove, F. Formisano, F. Sacchetti, C. Petrillo, A. Ivanov, B. Dorner, and F. Barocchi, Phys. Rev. B: Condens. Matter 71, 014207 (2005).

    Article  ADS  Google Scholar 

  31. F. J. Bermejo, I. Bustinduy, S. J. Levett, J. W. Taylor, R. Fernández-Perea, and C. Cabrillo, Phys. Rev. B: Condens. Matter 72, 104103 (2005).

    Article  ADS  Google Scholar 

  32. S. Hosokawa, M. Inui, Y. Kajihara, K. Matsuda, T. Ichitsubo, W. C. Pilgrim, H. Sinn, L. E. González, D. J. González, S. Tsutsui, and A. Q. R. Baron, Phys. Rev. Lett. 102, 105502 (2009).

    Article  ADS  Google Scholar 

  33. V. Giordano and G. Monaco, Phys. Rev. B: Condens. Matter 84, 052201 (2011).

    Article  ADS  Google Scholar 

  34. N. M. Blagoveshchenskii, A. G. Novikov, A. V. Puchkov, and V. V. Savostin, JETP Lett. 100 (5), 340 (2014).

    Article  ADS  Google Scholar 

  35. N. M. Blagoveshchenskii, A. G. Novikov, A. V. Puchkov, and V. V. Savostin, Crystallogr. Rep. (2015) (in press).

    Google Scholar 

  36. S. Hosokawa, M. Inui, Y. Kajihara, S. Tsutsui, and A. Q. R. Baron, J. Phys.: Condens. Matter 27, 194104 (2015).

    ADS  Google Scholar 

  37. D. K. Belashchenko, Russ. J. Phys. Chem. A 86, 779 (2012).

    Article  Google Scholar 

  38. D. K. Belashchenko, Phys.—Usp. 56 (12), 1176 (2013).

    Article  ADS  Google Scholar 

  39. A. V. Mokshin, A. V. Chvanova, and R. M. Khusnutdinov, Theor. Math. Phys. 171 (1), 541 (2012).

    Article  Google Scholar 

  40. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hänggi, Phys. Solid State 48 (9), 1760 (2006).

    Article  ADS  Google Scholar 

  41. A. V. Mokshin, S. O. Zabegaev, and R. M. Khusnutdinoff, Phys. Solid State 53 (3), 570 (2011).

    Article  ADS  Google Scholar 

  42. N. Blagoveshchenskii, A. Novikov, A. Puchkov, V. Savostin, and O. Sobolev, EPJ Web Conf. 83, 02018 (2015).

    Article  Google Scholar 

  43. A. Novikov, Yu. Lisichkin, and N. Fomichev, Zh. Fiz. Khim. 60, 1337 (1986).

    Google Scholar 

  44. S. Hosokawa, W.-C. Pilgrim, H. Sinn, and E. Alp, J. Phys.: Condens. Matter. 20, 114107 (2008).

    ADS  Google Scholar 

  45. N. H. March, Liquid Metals: Concepts and Theory (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  46. J. A. Prins and H. Petersen, Physica (Amsterdam) 3, 147 (1936).

    Article  ADS  Google Scholar 

  47. J.-P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).

    Article  ADS  Google Scholar 

  48. H. R. Wendt and F. F. Abhraham, Phys. Rev. Lett. 41, 1214 (1978).

    Article  ADS  Google Scholar 

  49. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  50. P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).

    Article  ADS  Google Scholar 

  51. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B: Condens. Matter 28, 784 (1983).

    Article  ADS  Google Scholar 

  52. A. V. Mokshin and J.-L. Barrat, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 021505 (2008).

    Article  ADS  Google Scholar 

  53. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 2006).

    MATH  Google Scholar 

  54. R. M. Khusnutdinoff and A. V. Mokshin, J. Non-Cryst. Sol. 357, 1677 (2011).

    Article  ADS  Google Scholar 

  55. R. M. Khusnutdinoff and A. V. Mokshin, Physica A (Amsterdam) 391, 2842 (2012).

    Article  ADS  Google Scholar 

  56. R. M. Khusnutdinoff, A. V. Mokshin, and I. D. Takhaviev, Phys. Solid State 57 (2), 412 (2015).

    Article  ADS  Google Scholar 

  57. K. Trachenko and V. V. Brazhkin, submitted to Rev. Mod. Phys. (2015).

    Google Scholar 

  58. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi, J. Phys.: Condens. Matter 19, 046209 (2007).

    ADS  Google Scholar 

  59. W. Schirmacher, T. Scopigno, and G. Ruocco, J. Non-Cryst. Sol. 407, 133 (2015).

    Article  ADS  Google Scholar 

  60. P. Jedlovszky, G. Garberoglio, and R. Vallauri, J. Phys.: Condens. Matter 22, 284105 (2011).

    Google Scholar 

  61. N. Ohtori and Y. Ishii, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 91, 012111 (2015).

    Article  ADS  Google Scholar 

  62. R. Zwanzig, J. Chem. Phys. 79, 4507 (1983).

    Article  ADS  Google Scholar 

  63. Physics of Simple Liquids, Ed by H. Temperley, J. Rowlinson, and G. Rushbrook (North-Holland, Amsterdam, The Netherlands, 1968; Mir, Moscow, 1971).

  64. A. V. Mokshin and R. M. Yulmetyev, Microscopic Dynamics of Simple Liquids (Center of Innovation Technologies, Kazan, 2006) [in Russian].

    Google Scholar 

  65. A. V. Mokshin and J.-L. Barrat, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 82, 021505 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mokshin.

Additional information

Original Russian Text © A.V. Mokshin, R.M. Khusnutdinoff, A.G. Novikov, N.M. Blagoveshchenskii, A.V. Puchkov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 947–965.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokshin, A.V., Khusnutdinoff, R.M., Novikov, A.G. et al. Short-range order and dynamics of atoms in liquid gallium. J. Exp. Theor. Phys. 121, 828–843 (2015). https://doi.org/10.1134/S1063776115110072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110072

Keywords

Navigation