Skip to main content
Log in

Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, PNuovo Cimento Soc. Ital. Fis., B 36, 5 (1976).

    Article  ADS  Google Scholar 

  2. E. Arimondo and G. Orriols, Nuovo Cimento Lett. 17, 333 (1976).

    Article  ADS  Google Scholar 

  3. B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, PPhys.—Usp. 36 (9), 763 (1993).

    Article  Google Scholar 

  4. E. Arimondo, in Progress in Optics, Ed. by E. Wolf (Elsevier, Amsterdam, The Netherlands, 1996), Vol. XXXV, p. 257.

  5. M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Sov. Phys. JETP 68 (4), 728 (1989).

    Google Scholar 

  6. S. Harris, Phys. Today 50, 36 (1997).

    Article  Google Scholar 

  7. M. Merimaa, T. Lindvall, I. Tittonen, and E. Ikonen, J. Opt. Soc. Am. B 20, 273 (2003).

    Article  ADS  Google Scholar 

  8. J. Vanier, Appl. Phys. B: Lasers Opt. 81, 421 (2005).

    Article  ADS  Google Scholar 

  9. M. Stahler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).

    Article  ADS  Google Scholar 

  10. A. Akulshin, A. Celikov, and V. Velichansky, Opt. Commun. 84, 139 (1991).

    Article  ADS  Google Scholar 

  11. D. Peter, D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, Appl. Phys. Lett. 85, 6409 (2004).

    Article  ADS  Google Scholar 

  12. V. V. Yashuk, J. Granwehr, D. F. Kimbal, S. M. Rochester, A. H. Trabesinger, J. T. Urban, D. Budker, and A. Pines, Phys. Rev. Lett. 93, 160801 (2004).

    Article  ADS  Google Scholar 

  13. M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).

    Article  ADS  Google Scholar 

  14. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  15. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, Bristol, United Kingdom, 1989), p. 1567.

    Book  Google Scholar 

  16. A. S. Zibrov, A. S. Zhukov, V. P. Yakovlev, and V. L. Velichanskii, JETP Lett. 83 (4), 136 (2006).

    Article  ADS  Google Scholar 

  17. A. Litvinov, G. Kazakov, B. Matisov, and I. Mazets, J. Phys. B: At., Mol. Opt. Phys. 41, 125401 (2008).

    Article  ADS  Google Scholar 

  18. S. A. Zibrov, Y. O. Dudin, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, in Abstract Book of the International Conference on Coherent and Nonlinear Optics (ICONO’05), St. Petersburg, May 11–15, 2005 (St. Petersburg, 2005), p. ISK8.

    Google Scholar 

  19. S. A. Zibrov, V. L. Velichnaskii, A. S. Zibrov, A. V. Taichenachev, and V. I. Yudin, JETP Lett. 82 (8), 477 (2005).

    Article  Google Scholar 

  20. S. A. Zibrov, I. Novikova, D. F. Phillips, R. L. Walsworth, A. S. Zibrov, V. L. Velichansky, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A: At., Mol., Opt. Phys. 81, 013833 (2010).

    Article  ADS  Google Scholar 

  21. G. Kazakov, B. Matisov, I. Mazets, G. Mileti, and J. Delporte, Phys. Rev. A: At., Mol., Opt. Phys. 72, 063408 (2005).

    Article  ADS  Google Scholar 

  22. E. Breschi, G. Kazakov, R. Lammegger, G. Mileti, B.Matisov, and L. Windholz, Phys. Rev. A: At., Mol., Opt. Phys. 79, 063837 (2009).

    Article  ADS  Google Scholar 

  23. X. Liu, J. Mérolla, S. Guérandel, C. Gorecki, E. de Clercq, and R. Boudot, Phys. Rev. A: At., Mol., Opt. Phys. 87, 029903 (2013).

    Article  ADS  Google Scholar 

  24. O. Firstenberg, M. Shuker, A. Ben-Kish, D. R. Fredkin, N. Davidson, and A. Ron, Phys. Rev. A: At., Mol., Opt. Phys. 76, 013818 (2007).

    Article  ADS  Google Scholar 

  25. J.-M. Danet, M. Lours, S. Guérandel, and E. Clercq, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 61, 567 (2014).

    Article  Google Scholar 

  26. Y. Yano, W. Gao, S. Goka, and M. Kajita, Phys. Rev. A: At., Mol., Opt. Phys. 90, 013826 (2014).

    Article  ADS  Google Scholar 

  27. D. L. Butts, J. M. Kinast, K. Kotru, A. M. Radojevic, B. P. Timmons, and R. E. Stoner, Phys. Rev. A: At., Mol., Opt. Phys. 84 (4), 043613 (2011).

    Article  ADS  Google Scholar 

  28. Y. Yano, S. Goka, and M. Kajita, arXiv:1411.3779v2 [physicsatom-ph].

  29. M. Huang and J. C. Camparo, Phys. Rev. A: At., Mol., Opt. Phys. 85, 012509 (2012).

    Article  ADS  Google Scholar 

  30. D. Aumiler, Phys. Rev. A: At., Mol., Opt. Phys. 82, 055402 (2010).

    Article  ADS  Google Scholar 

  31. A. Litvinov, G. Kazakov, B. Matisov, et al., J. Phys. B: At., Mol. Opt. Phys. 43, 1 (2010).

    Google Scholar 

  32. Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, Phys. Rev. Lett. 96, 043601 (2006).

    Article  ADS  Google Scholar 

  33. E. Breschi, G. Kazakov, C. Schori, G. Di Domenico, G. Mileti, A. Litvinov, and B. Matisov, Phys. Rev. A: At., Mol., Opt. Phys. 82, 063810 (2010).

    Article  ADS  Google Scholar 

  34. G. A. Kazakov, A. N. Litvinov, B. G. Matisov, V. I. Romanenko, L. P. Yatsenko, and A. V. Romanenko, J. Phys. B: At., Mol. Opt. Phys. 44, 235401 (2011).

    Article  ADS  Google Scholar 

  35. G. A. Kazakov, A. N. Litvinov, and B. G. Matisov, Kvantovaya Elektron. (Moscow) 42, 185 (2012).

    Article  Google Scholar 

  36. H. Robinson, E. Ensberg, and H. Dehmel, Bull. Am. Phys. Soc. 3, 9 (1958).

    Google Scholar 

  37. M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, J. Mod. Opt. 53, 2583 (2006).

    Article  ADS  Google Scholar 

  38. C. Y. Ye and A. S. Zibrov, Phys. Rev. A: At., Mol., Opt. Phys. 65, 023806 (2002).

    Article  ADS  Google Scholar 

  39. G. Alzetta, S. Gozzini, A. Lucchesini, S. Cartaleva, T. Karaulanov, C. Marinelli, and L. Moi, Phys. Rev. A: At., Mol., Opt. Phys. 69, 063815 (2004).

    Article  ADS  Google Scholar 

  40. A. I. Okunevich, Opt. Spectrosc. 97 (6), 834 (2004).

    Article  ADS  Google Scholar 

  41. G. Kazakov, B. Matisov, A. Litvinov, and I. Mazets, J. Phys. B: At., Mol. Opt. Phys. 40, 3851 (2007).

    Article  ADS  Google Scholar 

  42. M. Klein, M. Hohensee, D. F. Phillips, and R. L. Walsworth, Phys. Rev. A: At., Mol., Opt. Phys. 83, 013826 (2011).

    Article  ADS  Google Scholar 

  43. R. H. Dicke, Phys. Rev. 89, 472 (1953).

    Article  ADS  Google Scholar 

  44. I. E. Mazets and B. G. Matisov, Sov. Phys. JETP 74 (1), 13 (1992).

    Google Scholar 

  45. S. Brandt, A. Nagel, R. Wynands, and D. Meschede, Phys. Rev. A: At., Mol., Opt. Phys. 56, 2 (1997).

    Article  Google Scholar 

  46. R. Wynands and A. Nagel, Appl. Phys. B: Lasers Opt. 68, 1 (1999).

    Article  ADS  Google Scholar 

  47. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Spectra of Atoms and Molecules (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  48. K. A. Barantsev, E. N. Velichko, and A. N. Litvinov, J. Phys. B: At., Mol. Opt. Phys. 47, 245401 (2014).

    Article  ADS  Google Scholar 

  49. E. Arimondo, Phys. Rev. A: At., Mol., Opt. Phys. 54, 2216 (1996).

    Article  ADS  Google Scholar 

  50. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965; Nauka, Moscow, 1979), p. 126.

    MATH  Google Scholar 

  51. O. A. Kocharovskaya and Ya. I. Khanin, Sov. Phys. JETP 63 (5), 945 (1986).

    Google Scholar 

  52. A. G. Chirkov and B. G. Matisov, Modern Theory of the Stability of Precision Generators (St. Petersburg Polytechnic University, St. Petersburg, 2010), p. 76 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Barantsev.

Additional information

Original Russian Text © K.A. Barantsev, E.N. Popov, A.N. Litvinov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 869–882.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barantsev, K.A., Popov, E.N. & Litvinov, A.N. Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas. J. Exp. Theor. Phys. 121, 758–769 (2015). https://doi.org/10.1134/S1063776115110011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110011

Keywords

Navigation