Skip to main content
Log in

Surface states in a 3D topological insulator: The role of hexagonal warping and curvature

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We explore a combined effect of hexagonal warping and a finite effective mass on both the tunneling density of electronic surface states and the structure of Landau levels of 3D topological insulators. We find the increasing warping to transform the square-root van Hove singularity into a logarithmic one. For moderate warping, an additional logarithmic singularity and a jump in the tunneling density of surface states appear. By combining the perturbation theory and the WKB approximation, we calculate the Landau levels in the presence of hexagonal warping. We predict that due to the degeneracy removal, the evolution of Landau levels in the magnetic field is drastically modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  2. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  3. Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).

    Article  ADS  Google Scholar 

  4. L. Fu, Phys. Rev. Lett. 103, 266801 (2009).

    Article  ADS  Google Scholar 

  5. C.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. B: Condens. Matter 82, 045122 (2010).

    Article  ADS  Google Scholar 

  6. Y. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S.-C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science (Washington) 325, 178 (2009).

    Article  ADS  Google Scholar 

  7. Zh. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, and A. Kapitulnik, Phys. Rev. B: Condens. Matter 84, 041104 (2011).

    Article  ADS  Google Scholar 

  8. K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura, E. E. Krasovskii, E. V. Chulkov, H. Iwasawa, T. Okuda, K. Shimada, Y. Ueda, H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 105, 076802 (2010).

    Article  ADS  Google Scholar 

  9. M. Nomura, S. Souma, A. Takayama, T. Sato, T. Takahashi, K. Eto, K. Segawa, and Y. Ando, Phys. Rev. B: Condens. Matter 89, 045134 (2014).

    Article  ADS  Google Scholar 

  10. C. M. Wang and F. J. Yu, Phys. Rev. B: Condens. Matter 84, 155440 (2011).

    Article  ADS  Google Scholar 

  11. X. Xiao and W. Wen, Phys. Rev. B: Condens. Matter 88, 045442 (2013).

    Article  ADS  Google Scholar 

  12. S. Smirnov, Phys. Rev. B: Condens. Matter 88, 205301 (2013).

    Article  ADS  Google Scholar 

  13. Z.-G. Fu, F. Zheng, Z. Wang, and P. Zhang, Prog. Theor. Exp. Phys., 103I01 (2013).

    Google Scholar 

  14. S. Urazhdin, D. Bilc, S. D. Mahanti, S. H. Tessmer, Th. Kyratsi, and M. G. Kanazidis, Phys. Rev. B: Condens. Matter 69, 085313 (2004).

    Article  ADS  Google Scholar 

  15. Zh. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett. 104, 016401 (2010).

    Article  ADS  Google Scholar 

  16. P. Sessi, M. M. Otrokov, T. Bathon, M. G. Vergniory, S. S. Tsirkin, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, and M. Bode, Phys. Rev. B: Condens. Matter 88, 161407(R) (2013).

    Article  ADS  Google Scholar 

  17. V. S. Stolyarov, T. Cren, C. Brun, S. I. Bozhko, L. V. Yashina, and D. Roditchev, (in preparation).

  18. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Phys. Rev. B: Condens. Matter 82, 081305(R) (2010).

    Article  ADS  Google Scholar 

  19. T. Zhang, N. Levy, J. Ha, Y. Kuk, and J. A. Stroscio, Phys. Rev. B: Condens. Matter 87, 115410 (2013).

    Article  ADS  Google Scholar 

  20. Y.-S. Fu, M. Kawamura, K. Igarashi, H. Takagi, T. Hanaguri, and T. Sasagawa, arXiv:1408.0873 (unpublished).

  21. Y. Jiang, Y. Wang, M. Chen, Z. Li, C. Song, K. He, L. Wang, X. Chen, X. Ma, and Q.-K. Xue, Phys. Rev. Lett. 108, 016401 (2012).

    Article  ADS  Google Scholar 

  22. A. Yu. Dmitriev, N. I. Fedotov, V. F. Nasretdinova, and S. V. Zaitsev-Zotov, arXiv:1408.4991 (unpublished).

  23. K. Saha, S. Das, K. Sengupta, and D. Sen, Phys. Rev. B: Condens. Matter 84, 165439 (2011).

    Article  ADS  Google Scholar 

  24. P. Schwab and M. Dzierzawa, Phys. Rev. B: Condens. Matter 85, 155403 (2012).

    Article  ADS  Google Scholar 

  25. M. M. Vazifeh and M. Franz, Phys. Rev. B: Condens. Matter 86, 045451 (2012).

    Article  ADS  Google Scholar 

  26. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39 (2), 78 (1984); J. Phys. C: Solid State Phys. 17, 6039 (1984).

    ADS  Google Scholar 

  27. P. G. Silvestrov, P. W. Brouwer, and E. G. Mishchenko, Phys. Rev. B: Condens. Matter 86, 075302 (2012).

    Article  ADS  Google Scholar 

  28. F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. B: Condens. Matter 86, 081303(R) (2012).

    Article  ADS  Google Scholar 

  29. S. Basak, H. Lin, L. A. Wray, S.-Y. Xu, L. Fu, M. Z. Hasan, and A. Bansil, Phys. Rev. B: Condens. Matter 84, 121401(R) (2011).

    Article  ADS  Google Scholar 

  30. Z. Yang and J. H. Han, Phys. Rev. B: Condens. Matter 83, 045415 (2011).

    Article  ADS  Google Scholar 

  31. For a review, see, e.g., I. M. Lifshitz, M. Y. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).

  32. L. A. Falkovsky, Sov. Phys. JETP 22, 423 (1965)

    ADS  Google Scholar 

  33. A. Yu. Ozerin and L. A. Falkovsky, Phys. Rev. B: Condens. Matter 85, 205143 (2012).

    Article  ADS  Google Scholar 

  34. M. R. Scholz, J. Sánchez-Barriga, J. Braun, D. Marchenko, A. Varykhalov, M. Lindroos, Y. J. Wang, H. Lin, A. Bansil, J. Minár, H. Ebert, A. Volykhov, L. V. Yashina, and O. Rader, Phys. Rev. Lett. 110, 216801 (2013).

    Article  ADS  Google Scholar 

  35. A. Wolos, S. Szyszko, A. Drabinska, M. Kaminska, S. G. Strzelecka, A. Hruban, A. Materna, and M. Piersa, Phys. Rev. Lett. 109, 247604 (2012).

    Article  ADS  Google Scholar 

  36. A. A. Schafgans, K. W. Post, A. A. Taskin, Y. Ando, X.-Liang Qi, B. C. Chapler, and D. N. Basov, Phys. Rev. B: Condens. Matter 85, 195440 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Burmistrov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repin, E.V., Burmistrov, I.S. Surface states in a 3D topological insulator: The role of hexagonal warping and curvature. J. Exp. Theor. Phys. 121, 509–520 (2015). https://doi.org/10.1134/S1063776115100192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115100192

Keywords

Navigation