Skip to main content
Log in

Critical points of metal vapors

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Young and R. J. Alder, Phys. Rev. A: At., Mol., Opt. Phys. 3, 364 (1971).

    Article  ADS  Google Scholar 

  2. A. A. Likal’ter, Phys.–Usp. 43 (7), 777 (2000).

    Article  Google Scholar 

  3. A. A. Likalter, Physica A 311, 137 (2002).

    Article  ADS  Google Scholar 

  4. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 118 (1), 72 (2014).

    Article  ADS  Google Scholar 

  5. A. L. Khomkin and A. S. Shumikhin, Plasma Phys. Rep. 39 (10), 857 (2013).

    Article  ADS  Google Scholar 

  6. J. Bardeen, J. Chem. Phys. 6, 367 (1938).

    Article  ADS  Google Scholar 

  7. M. S. Daw and M. I. Baskes, Phys. Rev. B: Condens. Matter 29, 6443 (1984).

    Article  ADS  Google Scholar 

  8. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  MATH  ADS  Google Scholar 

  9. A. Banerjia and J. R. Smith, Phys. Rev. B: Condens. Matter 37, 6632 (1988).

    Article  ADS  Google Scholar 

  10. J. R. Smith, J. H. Rose, F. Guinea, and J. Ferrante, Phys. Rev. B: Condens. Matter 29, 2963 (1984).

    ADS  Google Scholar 

  11. F. W. Averill, Phys. Rev. B: Solid State 6, 3637 (1972).

    Article  ADS  Google Scholar 

  12. F. Hensel and W. W. Warren, Jr., Fluid Metals (Princeton Univ. Press, Princeton, New Jersey, United States, 1999).

    Book  Google Scholar 

  13. V. E. Fortov, A. N. Dremin, and A. A. Leont’ev, High Temp. 13 (5), 984 (1975).

    Google Scholar 

  14. A. A. Likalter, Phys. Rev. B: Condens. Matter 53, 4386 (1996).

    Article  ADS  Google Scholar 

  15. I. G. Dillon, P. A. Nelson, and B. S. Swanson, J. Chem. Phys. 44, 4229 (1966).

    Article  ADS  Google Scholar 

  16. A. A. Likal’ter, High Temp. 23, 371 (1985).

    Google Scholar 

  17. A. V. Bushman, A. L. Ni, and V. E. Fortov, in Equations of State under Extreme Conditions (IPTM, Novosibirsk, 1981), p. 178 [in Russian].

    Google Scholar 

  18. E. M. Apfelbaum and V. S. Vorob’ev, Chem. Phys. Lett. 467, 318 (2009).

    Article  ADS  Google Scholar 

  19. L. V. Al’tshuler, A. V. Bushman, M. V. Zhernokletov, V. N. Zubarev, A. A. Leont’ev, and V. E. Fortov, Sov. Phys. JETP 51 (2), 373 (1980).

    ADS  Google Scholar 

  20. G. R. Gathers, Int. J. Thermophys. 4, 209 (1983).

    Article  ADS  Google Scholar 

  21. N. N. Stolovich and N. S. Minitskaya, Temperature Dependences of the Thermal and Physical Properties at High Energy Densities (Nauka i Tekhnika, Minsk, 1975) [in Russian].

    Google Scholar 

  22. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Preprint IKhF RAN (Institute of Chemical Physics of the Russian Academy of Sciences, Chernogolovka, Moscow region, 1992).

    Google Scholar 

  23. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, Phys.–Usp. 55 (7), 1061 (2012).

    Article  ADS  Google Scholar 

  24. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 120 (4), 672 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khomkin.

Additional information

Original Russian Text © A.L. Khomkin, A.S. Shumikhin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 3, pp. 597–604.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomkin, A.L., Shumikhin, A.S. Critical points of metal vapors. J. Exp. Theor. Phys. 121, 521–528 (2015). https://doi.org/10.1134/S1063776115090162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115090162

Keywords

Navigation