Skip to main content
Log in

Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The behavior of the orientational structure of a ferronematic in a rotating uniform magnetic field is investigated using the continual theory. The time-dependent system of equations describing the dynamics of the ferronematic is derived. The dependences of the angles of rotation of the director and of the magnetization of the ferronematic on the velocity of field rotation are determined for various values of the material parameters. Two regimes (synchronous and asynchronous) of rotation of the ferronematic structure are detected. In the synchronous regime, the director rotates with the frequency of the magnetic field and a constant phase delay. The asynchronous regime is characterized by a time-dependent phase delay. The dependence of the critical angular velocity of magnetic field rotation, which determines the boundary between the synchronous and asynchronous regimes, on the magnetic field strength is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Garbovskiy and A. V. Glushchenko, Solid State Phys. 62, 1 (2010).

    Google Scholar 

  2. F. Brochard and P. G. de Gennes, J. Phys. (Paris) 31, 691 (1970).

    Article  Google Scholar 

  3. E. Ouskova, O. Buluy, C. Blanc, H. Dietsch, and A. Mertelj, Mol. Cryst. Liq. Cryst. 525, 104 (2010).

    Article  Google Scholar 

  4. Z. Mitróová, N. Tomašovicová, M. Timko, M. Koneracká, J. Kovác, J. Jadzyn, I. Vávra, N. Éber, T. Tóth-Katona, E. Beaugnon, X. Chaud, and P. Kopcanský, New J. Chem. 35, 1260 (2011).

    Article  Google Scholar 

  5. O. Buluy, S. Nepijko, V. Reshetnyak, E. Ouskova, V. Zadorozhnii, A. Leonhardt, M. Ritschel, G. Schönhense, and Y. Reznikov, Soft Matter 7, 644 (2011).

    Article  ADS  Google Scholar 

  6. N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, J. Colloid Interface Sci. 386, 158 (2012).

    Article  Google Scholar 

  7. N. Tomašovicová, M. Timko, Z. Mitróová, M. Koneracká, M. Rajnak, N. Éber, T. Tóth-Katona, X. Chaud, J. Jadzyn, and P. Kopcanský, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87, 014501 (2013).

    Article  ADS  Google Scholar 

  8. S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 107 (1995).

    Article  Google Scholar 

  9. S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 123 (1995).

    Article  Google Scholar 

  10. A. N. Zakhlevnykh, J. Magn. Magn. Mater. 269, 238 (2004).

    Article  ADS  Google Scholar 

  11. V. I. Zadorozhnii, T. J. Sluckin, V. Yu. Reshetnyak, and K. S. Thomas, SIAM J. Appl. Math. 68, 1688 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. V. Makarov and A. N. Zakhlevnykh, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 81, 051710 (2010).

    Article  ADS  Google Scholar 

  13. A. N. Zakhlevnykh and O. R. Semenova, Mol. Cryst. Liq. Cryst. 540, 219 (2011).

    Article  Google Scholar 

  14. N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, Soft Matter 7, 4742 (2011).

    Article  ADS  Google Scholar 

  15. A. N. Zakhlevnykh and O. R. Semenova, Tech. Phys. 57 (2), 157 (2012).

    Article  Google Scholar 

  16. D. V. Makarov and A. N. Zakhlevnykh, Soft Matter 8, 6493 (2012).

    Article  Google Scholar 

  17. J. C. Bacri and A. M. Figueiredo Neto, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Soft Matter Phys. 50, 3860 (1994).

    Article  ADS  Google Scholar 

  18. Y. L. Raikher and V. I. Stepanov, J. Intell. Mater. Syst. Struct. 7, 550 (1996).

    Article  Google Scholar 

  19. A. N. Zakhlevnykh and D. V. Makarov, Mol. Cryst. Liq. Cryst. 475, 233 (2007).

    Article  Google Scholar 

  20. D. V. Makarov and A. N. Zakhlevnykh, J. Magn. Magn. Mater. 320, 1312 (2008).

    Article  ADS  Google Scholar 

  21. A. N. Zakhlevnykh and D. V. Makarov, Mol. Cryst. Liq. Cryst. 540, 135 (2011).

    Article  Google Scholar 

  22. Yu. Garbovskiy, J. R. Baptist, J. Thompson, T. Hunter, J. H. Lim, S. G. Min, J. B. Wiley, L. M. Malkinski, A. Glushchenko, and Z. Celinski, Appl. Phys. Lett. 101, 181109 (2012).

    Article  ADS  Google Scholar 

  23. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor and Francis, London, 2004).

    Google Scholar 

  24. M. I. Shliomis, Sov. Phys.—Usp. 17 (2), 153 (1974).

    Article  ADS  Google Scholar 

  25. V. M. Zaitsev and M. I. Shliomis, Prikl. Mekh. Tekh. Fiz. 10 (5), 11 (1969).

    Google Scholar 

  26. G. Derfel, Mol. Cryst. Liq. Cryst. 92, 41 (1983).

    Article  Google Scholar 

  27. S. V. Pasechnik, V. G. Chigrinov, and D. V. Shmeliova, Liquid Crystals (Wiley, Weinheim, 2009).

    Book  Google Scholar 

  28. V. V. Belyaev, Viscosity of Nematic Liquid Crystals (Fizmatlit, Moscow, 2002; Cambridge International Science, Cambridge, 2009).

    Google Scholar 

  29. F. M. Leslie, G. R. Luckhurst, and H. J. Smith, Chem. Phys. Lett. 13, 368 (1972).

    Article  ADS  Google Scholar 

  30. H. Kneppe and F. Schneider, J. Phys. E: Sci. Instrum. 16, 512 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Boychuk.

Additional information

Original Russian Text © A.N. Boychuk, A.N. Zakhlevnykh, D.V. Makarov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 3, pp. 617–629.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boychuk, A.N., Zakhlevnykh, A.N. & Makarov, D.V. Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field. J. Exp. Theor. Phys. 121, 541–552 (2015). https://doi.org/10.1134/S1063776115090046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115090046

Keywords

Navigation