Skip to main content
Log in

Simulation of the interaction between discrete breathers of various types in a Pt3Al crystal nanofiber

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is known that, in a molecular dynamics model of Pt3Al crystal, a discrete breather (DB) with soft type nonlinearity (DB1) can be excited, which is characterized by a high degree of localization on a light atom (Al), stationarity, as well as a frequency that lies in the gap of the phonon spectrum and decreases with increasing amplitude of the DB. In this paper, it is demonstrated that a DB with hard type nonlinearity (DB2) can be excited in a Pt3Al nanofiber; this DB is localized on several light atoms, can move along the crystal, and has a frequency that lies above the phonon spectrum and increases with the DB amplitude. It is noteworthy that the presence of free surfaces of a nanofiber does not prevent the existence of DB1 and DB2 in it. Collisions of two DBs counterpropagating with equal velocities, as well as a collision of DB2 with a standing DB1, are considered. Two colliding DBs with hard type nonlinearity are repelled almost elastically, losing only insignificant part of their energy during the interaction. DB2 is also reflected from a standing DB1; in this case, the energy of the breathers is partially scattered into the Al sublattice. The results obtained indicate that DBs can transfer energy along a crystal over large distances. During the collision of two or more DBs, the energy localized in space can be as high as a few electron-volts; this allows one to raise the question of the participation of DBs in structural transformations of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Andrievskii and A. M. Glezer, Phys.—Usp. 52 (4), 315 (2009).

    Article  ADS  Google Scholar 

  2. A. I. Potekaev, M. D. Starostenkov, N. V. Sinitsa, A. V. Yashin, E. G. Kharina, and V. V. Kulagina, Russ. Phys. J. 53 (8), 818 (2011).

    Article  Google Scholar 

  3. S. J. A. Koh and H. P. Lee, Nanotechnology 17, 3451 (2006).

    Article  ADS  Google Scholar 

  4. H. Gleiter, in Proceedings of the Second RISO International Symposium on Metallurgy and Materials Science, Risø National Laboratory, Roskilde, Denmark, 1981, Ed. by N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt (Roskilde, 1981), p. 15.

  5. M. D. Starostenkov, A. V. Yashin, E. A. Dudnik, and N. V. Sinitsa, Deform. Razrushenie Mater., No. 6, 28 (2009).

    Google Scholar 

  6. A. T. Matveev and I. M. Afanasov, Obtaining Nanowires by Electro-Molding (Moscow State University, Moscow, 2010) [in Russian].

    Google Scholar 

  7. R. I. Babicheva, K. A. Bukreeva, S. V. Dmitriev, R. R. Mulyukov, and K. Zhou, Intermetallics 43, 171 (2013).

    Article  Google Scholar 

  8. K. A. Bukreeva, R. I. Babicheva, S. V. Dmitriev, K. Zhou, and R. R. Mulyukov, JETP Lett. 98 (2), 91 (2013).

    Article  ADS  Google Scholar 

  9. A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).

    Article  ADS  Google Scholar 

  10. G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 036608 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  11. M. E. Manley, A. Alatas, F. Trouw, B. M. Leu, J. W. Lynn, Y. Chen, and W. L. Hults, Phys. Rev. B: Condens. Matter 77, 214305 (2008).

    Article  ADS  Google Scholar 

  12. M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, and J. L. Smith, Phys. Rev. Lett. 96, 125501 (2006).

    Article  ADS  Google Scholar 

  13. M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B: Condens. Matter 79, 134304 (2009).

    Article  ADS  Google Scholar 

  14. A. A. Kistanov, A. S. Semenov, R. T. Murzaev, and S. V. Dmitriev, Fundam. Probl. Sovrem. Materialoved. 11, 322 (2014).

    Google Scholar 

  15. A. A. Kistanov, R. T. Murzaev, S. V. Dmitriev, V. I. Dubinko, and V. V. Khizhnyakov, JETP Lett. 99 (6), 353 (2014).

    Article  ADS  Google Scholar 

  16. A. A. Kistanov, S. V. Dmitriev, A. P. Chetverikov, and M. G. Velarde, Eur. Phys. J. B 87, 211 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. A. Kistanov, S. V. Dmitriev, A. S. Semenov, V. I. Dubinko, and D. A. Terent’ev, Tech. Phys. Lett. 40 (8), 657 (2014).

    Article  ADS  Google Scholar 

  18. A. A. Kistanov, A. S. Semenov, and S. V. Dmitriev, J. Exp. Theor. Phys. 119 (4), 766 (2014).

    Article  ADS  Google Scholar 

  19. A. A. Kistanov, Fundam. Probl. Sovrem. Materialoved. 11, 9 (2014).

    Google Scholar 

  20. V. I. Dubinko, A. V. Dubinko, and S. V. Dmitriev, Pis’ma Mater. 3, 239 (2013).

    Google Scholar 

  21. A. A. Kistanov and S. V. Dmitriev, Pis’ma Mater. 2, 143 (2012).

    Google Scholar 

  22. A. A. Kistanov and S. V. Dmitriev, Tech. Phys. Lett. 39 (7), 618 (2013).

    Article  ADS  Google Scholar 

  23. A. A. Kistanov, Yu. A. Baimova, and S. V. Dmitriev, Tech. Phys. Lett. 38 (7), 676 (2012).

    Article  ADS  Google Scholar 

  24. Yu. A. Baimova, S. V. Dmitriev, A. A. Kistanov, and A. I. Potekaev, Russ. Phys. J. 56 (2), 180 (2013).

    Article  Google Scholar 

  25. P. V. Zakharov, M. D. Starostenkov, N. N. Medvedev, A. M. Eremin, and A. V. Markidonov, Fundam. Probl. Sovrem. Materialoved. 11, 388 (2014).

    Google Scholar 

  26. P. V. Zakharov, M. D. Starostenkov, A. M. Eremin, and A. V. Markidonov, Fundam. Probl. Sovrem. Materialoved. 11, 260 (2014).

    Google Scholar 

  27. M. D. Starostenkov, P. V. Zakharov, and N. N. Medvedev, Fundam. Probl. Sovrem. Materialoved. 8, 40 (2011).

    Google Scholar 

  28. N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and O. V. Pozhidaeva, Tech. Phys. Lett. 37 (2), 98 (2011).

    Article  ADS  Google Scholar 

  29. N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and A. V. Markidonov, Pis’ma Mater. 3, 34 (2013).

    Google Scholar 

  30. N. N. Medvedev and M. D. Starostenkov, Izv. Vyssh. Uchebn. Zaved., Fiz. 55, 113 (2012).

    Google Scholar 

  31. N. N. Medvedev, M. D. Starostenkov, and M. E. Manley, J. Appl. Phys. 114, 213506 (2013).

    Article  ADS  Google Scholar 

  32. N. N. Medvedev, M. D. Starostenkov, A. I. Potekaev, P. V. Zakharov, A. V. Markidonov, and A. M. Eremin, Russ. Phys. J. 57, 387 (2014).

    Article  Google Scholar 

  33. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).

    Article  ADS  Google Scholar 

  34. E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).

    Article  ADS  Google Scholar 

  35. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B: Condens. Matter 90, 045432 (2014).

    Article  ADS  Google Scholar 

  36. A. I. Tsaregorodtsev, N. V. Gorlov, B. F. Dem’yanov, et al., Fiz. Met. Metalloved. 58, 336 (1984).

    Google Scholar 

  37. P. V. Zakharov, M. D. Starostenkov, A. M. Eremin, and A. V. Markidonov, Fundam. Probl. Sovrem. Materialoved. 11, 260 (2014).

    Google Scholar 

  38. P. V. Zakharov, M. D. Starostenkov, N. N. Medvedev, A. M. Eremin, and A. V. Markidonov, Fundam. Probl. Sovrem. Materialoved. 11, 533 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Zakharov.

Additional information

Original Russian Text © P.V. Zakharov, M.D. Starostenkov, S.V. Dmitriev, N.N. Medvedev, A.M. Eremin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 2, pp. 252–257.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, P.V., Starostenkov, M.D., Dmitriev, S.V. et al. Simulation of the interaction between discrete breathers of various types in a Pt3Al crystal nanofiber. J. Exp. Theor. Phys. 121, 217–221 (2015). https://doi.org/10.1134/S1063776115080154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115080154

Keywords

Navigation