Skip to main content
Log in

Influence of radiation absorption by microparticles on the flame velocity and combustion regimes

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Thermal radiation from hot combustion products has virtually no effect on the flame propagation in a gas medium. We consider a different situation when even a small concentration of microparticles suspended in a gas absorbs the thermal radiation and heats the gas mixture ahead of the combustion wave front by transferring it to the gas. The mixture heating ahead of the flame front can lead either to a moderate increase in the combustion wave velocity for a fast flame or to its significant increase for a slow flame, depending on the gas mixture reactivity and the normal laminar flame velocity. For a slow flame, the heat transfer by radiation from the combustion products can become the dominant mechanism compared to the ordinary molecular thermal conduction that determines the combustion wave structure and velocity. The radiative heating for a spatially nonuniform distribution of particles ahead of the flame front is shown to give rise to a temperature gradient that, in turn, can lead to the ignition of different combustion regimes, depending on the radiation absorption length. In accordance with the Zeldovich gradient mechanism, both deflagration and detonation regimes can be formed in this case. A hydrogen–oxygen flame is used as an example to illustrate the ignition of different combustion wave propagation regimes, depending on the radiation absorption length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatgiz, Moscow, 1963; Academic, New York, 1967).

    Google Scholar 

  2. G. Joulin and B. Deshaies, Combust. Sci. Technol. 47, 299 (1986).

    Article  Google Scholar 

  3. G. Joulin and B. Deshaies, SIAM J. Appl. Math. 46, 561 (1986).

    Article  MATH  Google Scholar 

  4. G. Joulin and M. Eudier, Symp. (Int.) Combust., [Proc.] 22, 1579 (1989).

    Article  Google Scholar 

  5. R. Blouquin, G. Joulin, and Y. Merhari, Combust. Theory Modell. 1, 2 (1997).

    Article  Google Scholar 

  6. K. Seshadari, A. L. Berlad, and V. Tangirala, Combust. Flame 89, 333 (1992).

    Article  Google Scholar 

  7. T. F. Smith, K.-H. Byun, and L.-D. Chen, Combust. Flame 73, 67 (1988).

    Article  ADS  Google Scholar 

  8. S. W. Baek and C. Lee, Combust. Flame 75, 153 (1989).

    Article  ADS  Google Scholar 

  9. S. W. Baek, Combust. Flame 81, 366 (1990).

    Article  Google Scholar 

  10. S. W. Baek, Combust. Flame 97, 418 (1994).

    Article  Google Scholar 

  11. S. W. Baek, J. H. Park, and C. E. Choi, Combust. Sci. Technol. 142, 55 (1999).

    Article  Google Scholar 

  12. Ya. B. Zel’dovich, Classification of Regimes of Exothermic Reactions Depending on the Initial Conditions: Preprint (Institute of Chemical Physics, Academy of Sciences of the Soviet Union, Chernogolovka, Moscow region, 1978) [in Russian]

    Google Scholar 

  13. Ya. B. Zel’dovich, Combust. Flame 39, 211 (1980).

    Article  Google Scholar 

  14. Ya. B. Zel’dovich, V. B. Librovich, G. M. Makhviladze, and G. I. Sivashinskii, Prikl. Mekh. Tekh. Fiz., No. 2, 13 (1970)

    Google Scholar 

  15. Ya. B. Zel’dovich, V. B. Librovich, G. M. Makhviladze, and G. I. Sivashinsky, Astronaut. Acta 15, 313 (1970).

    Google Scholar 

  16. M. A. Liberman, M. F. Ivanov, and A. D. Kiverin, Phys. Lett. A 375, 1803 (2011).

    Article  ADS  Google Scholar 

  17. M. A. Liberman, M. F. Ivanov, and A. D. Kiverin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 056312 (2012).

    Article  ADS  Google Scholar 

  18. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988).

    Google Scholar 

  19. J. O. Hirschfelder, C. F. Gurtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

    Google Scholar 

  20. J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulations, Experiments, Pollutant Formation (SpringerVerlag, New York, 2001).

    Book  Google Scholar 

  21. A. Acrivos and T. D. Taylor, Phys. Fluids 5, 387 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Hemisphere, Washington, 1993).

    Google Scholar 

  23. O. M. Belotserkovskii and Yu. M. Davydov, Method of Large Particles in Gas Dynamics: Computational Experiment (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  24. M. A. Liberman, M. F. Ivanov, O. D. Pui, and D. M. Valiev, Combust. Sci. Technol. 177, 151 (2005).

    Article  Google Scholar 

  25. M. A. Liberman, M. F. Ivanov, and D. M. Valiev, Combust. Sci. Technol. 178, 1613 (2006).

    Article  Google Scholar 

  26. M. A. Liberman, M. F. Ivanov, A. D. Kiverin, M. S. Kuznetsov, T. V. Rakhimova, and A. A. Chukalovskii, J. Exp. Theor. Phys. 111, (4) 684 (2010).

    Article  ADS  Google Scholar 

  27. M. F. Ivanov, A. D. Kiverin, M. A. Liberman, and V. E. Fortov, Dokl. Phys. 55, (10) 480 (2010).

    Article  ADS  Google Scholar 

  28. M. A. Liberman, M. F. Ivanov, A. D. Kiverin, M. S. Kuznetsov, A. A. Chukalovsky, and T. V. Rakhimova, Acta Astronaut. 67, 688 (2010).

    Article  ADS  Google Scholar 

  29. M. F. Ivanov, A. D. Kiverin, and M. A. Liberman, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83, 056313 (2011).

    Article  ADS  Google Scholar 

  30. M. F. Ivanov, A. D. Kiverin, I. S. Yakovenko, and M. A. Liberman, Internat. J. Hydrogen Energy 38, 16427 (2013).

    Article  Google Scholar 

  31. E. Hairer and G. Wanner, Solving Ordinary Differential Equations: II. Stiff and Differential–Algebraic Problems (Springer-Verlag, New York, 1996).

    Book  MATH  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth–Heinemann, Oxford, 1987).

    Google Scholar 

  33. Ya. B. Zel’dovich, G. I. Barenblat, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  34. V. V. Bychkov and M. A. Liberman, Phys. Rep. 325, 115 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  35. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  36. F. X. Timmes and S. E. Woosley, Astrophys. J. 396, 649 (1992).

    Article  ADS  Google Scholar 

  37. S. Perlmutter, G. Aldering, M. Della Valle, S. Deustua, R. S. Ellis, S. Fabbro, A. Fruchter, G. Goldhaber, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, R. A. Knop, C. Lidman, R. G. McMahon, et al., Nature (London) 391, 51 (1998).

    Article  ADS  Google Scholar 

  38. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  39. B. P. Schmidt, R. P. Kirshner, B. Leibundgut, L. Wells, A. C. Porter, P. RuizLapuente, and A. V. Filippenko, Astrophys. J. 434, L19 (1994).

    Article  ADS  Google Scholar 

  40. A. M. Khokhlov, Astron. Astrophys. 245, 114 (1991).

    ADS  Google Scholar 

  41. A. M. Khokhlov, E. Müller, and P. A. Höflich, Astron. Astrophys. 270, 223 (1993).

    ADS  Google Scholar 

  42. H. Yamaoka, K. Nomoto, T. Shigeyama, and F.-K. Thielemann, Astrophys. J. 393, L55 (1992).

    Article  ADS  Google Scholar 

  43. W. Hillebrandt and J. C. Niemeyer, Annu. Rev. Astron. Astrophys. 38, 191 (2000).

    Article  ADS  Google Scholar 

  44. A. C. Calder, B. K. Krueger, A. P. Jackson, D. M. Townsley, E. F. Brown, and F. X. Timmes, J. Phys.: Conf. Ser. 402, 012023 (2012).

    ADS  Google Scholar 

  45. A. P. Jackson, A. C. Calder, D. M. Townsley, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J. 720, 99 (2010).

    Article  ADS  Google Scholar 

  46. F. K. Röpk and J. C. Niemeyer, Astron. Astrophys. 464, 683 (2007).

    Article  ADS  Google Scholar 

  47. V. V. Bychkov and M. A. Liberman, Astron. Astrophys. 304, 440 (1995).

    ADS  Google Scholar 

  48. V. V. Bychkov and M. A. Liberman, Astrophys. Space Sci. 233, 287 (1995).

    Article  ADS  Google Scholar 

  49. S. A. Kriminski, V. V. Bychkov, and M. A. Liberman, New Astron. 3, 363 (1998).

    Article  ADS  Google Scholar 

  50. R. Edse and L. R. Lawrence, Combust. Flame 13, 479 (1969).

    Article  Google Scholar 

  51. O. M. Belotserkovskii, Numerical Simulation in the Mechanics of Continuous Media, 2nd ed. (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Ivanov.

Additional information

Original Russian Text © M.F. Ivanov, A.D. Kiverin, M.A. Liberman, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 1, pp. 190–204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.F., Kiverin, A.D. & Liberman, M.A. Influence of radiation absorption by microparticles on the flame velocity and combustion regimes. J. Exp. Theor. Phys. 121, 166–178 (2015). https://doi.org/10.1134/S1063776115080063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115080063

Keywords

Navigation