Skip to main content
Log in

Theory of magnetohydrodynamic accretion of matter with an ultrahard equation of state onto a black hole

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ2, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Beskin, Axisymmetric Stationary Flows in Astrophysics (Fizmatlit, Moscow, 2005).

    MATH  Google Scholar 

  2. V. S. Beskin, Phys.—Usp. 53(12), 1199 (2010).

    Article  ADS  Google Scholar 

  3. H. Bondi and F. Hoyle, Mon. Not. R. Astron. Soc. 104, 273 (1944).

    Article  ADS  Google Scholar 

  4. H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).

    Article  MathSciNet  ADS  Google Scholar 

  5. F. C. Michel, Astrophys. Space Sci. 15, 153 (1972).

    Article  ADS  Google Scholar 

  6. L. Petrich, S. Shapiro, and S. Teukolsky, Phys. Rev. Lett. 60, 1781 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  7. E. Babichev, S. Chernov, V. Dokuchaev, and Yu. Eroshenko, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 78, 104027 (2008).

    Article  Google Scholar 

  8. L. J. Davis and E. J. Weber, Astrophys. J. 148, 217 (1967).

    Article  ADS  Google Scholar 

  9. M. Takahashi, Astrophys. J. 570, 264 (2002).

    Article  ADS  Google Scholar 

  10. R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977).

    Article  ADS  Google Scholar 

  11. Ya. N. Istomin and V. I. Pariev, Mon. Not. R. Astron. Soc. 267, 629 (1994).

    Article  ADS  Google Scholar 

  12. A. Tchekhovskoy, J. McKinney, and R. Narayan, Astrophys. J. 699, 1789 (2009).

    Article  ADS  Google Scholar 

  13. A. Tchekhovskoy, R. Narayan, and J. McKinney, Astrophys. J. 711, 50 (2010).

    Article  ADS  Google Scholar 

  14. M. Takahashi, S. Nitta, Y. Tatematsu, and A. Tomimatsu, Astrophys. J. 363, 206 (1990).

    Article  ADS  Google Scholar 

  15. V. S. Beskin and V. I. Par’ev, Phys.—Usp. 36(6), 529 (1993).

    Article  ADS  Google Scholar 

  16. V. S. Beskin and E. E. Nokhrina, Mon. Not. R. Astron. Soc. 367, 375 (2006).

    Article  ADS  Google Scholar 

  17. V. S. Beskin and E. E. Nokhrina, Mon. Not. R. Astron. Soc. 397, 1486 (2009).

    Article  ADS  Google Scholar 

  18. A. G. W. Cameron, Astrophys. J. 130, 884 (1959).

    Article  ADS  Google Scholar 

  19. E. E. Salpeter, Ann. Phys. 11, 393 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  20. V. A. Ambartsumyan and G. S. Saakyan, Astron. Zh. 37, 193 (1960).

    ADS  Google Scholar 

  21. A. Yu. Potekhin, Phys.—Usp. 53(12), 1235 (2010).

    Article  ADS  Google Scholar 

  22. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars: Equation of State and Structure (Springer-Verlag, New York, 2007).

    Book  Google Scholar 

  23. Ya. B. Zel’dovich, Sov. Phys. JETP 14, 1143 (1961).

    Google Scholar 

  24. V. Canuto, Annu. Rev. Astron. Astrophys. 13, 335 (1975).

    Article  ADS  Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 1971).

    Google Scholar 

  26. R. F. Tooper, Astrophys. J. 140, 434 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. R. F. Tooper, Astrophys. J. 142, 1541 (1965).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chernov.

Additional information

Original Russian Text © S.V. Chernov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 6, pp. 1113–1119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, S.V. Theory of magnetohydrodynamic accretion of matter with an ultrahard equation of state onto a black hole. J. Exp. Theor. Phys. 120, 960–965 (2015). https://doi.org/10.1134/S1063776115050027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115050027

Keywords

Navigation