Skip to main content
Log in

Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Pohl, Philos. Trans. R. Soc. London, Ser. A 362, 701 (2004).

    Article  ADS  Google Scholar 

  2. L. Novotny and B. Hecht, Principles of Nano Optics (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  3. F. J. García de Abajo, Rev. Mod. Phys. 79, 1267 (2007).

    Article  ADS  Google Scholar 

  4. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuiperes, Rev. Mod. Phys. 82, 729 (2010).

    Article  ADS  Google Scholar 

  5. M.-C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  6. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005).

    Article  Google Scholar 

  7. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010).

    Book  Google Scholar 

  8. Progress in Nano-Electro-Optics V: Nanophotonic Fabrications, Devices, Systems, and Their Theoretical Bases, Ed. by M. Ohtsu (Springer, Berlin, 2011).

    Google Scholar 

  9. R. B. Vasiliev, D. N. Dirin, and A. M. Gaskov, Russ. Chem. Rev. 80, 1139 (2011).

    Article  ADS  Google Scholar 

  10. N. J. Smith, K. J. Emmett, and S. J. Rosenthal, Appl. Phys. Lett. 93, 043504 (2008).

    Article  ADS  Google Scholar 

  11. R. R. Lunt, T. P. Osedach, P. R. Brown, J. A. Rowehl, and V. Bulović, Adv. Mater. (Weinheim) 23, 5712 (2011).

    Article  Google Scholar 

  12. C. Guo, Y.-H. Lin, M. D. Witman, K. A. Smith, C. Wang, A. Hexemer, J. Strzalka, E. D. Gomez, and R. Verduzco, Nano Lett. 13, 2957 (2013).

    Article  ADS  Google Scholar 

  13. L.-Y. Chang, R. R. Lunt, P. R. Brown, V. Bulović, and M. G. Bawendi, Nano Lett. 13, 994 (2013).

    Article  ADS  Google Scholar 

  14. H. J. Bolink, H. Brine, E. Coronado, and M. Sessolo, J. Mater. Chem. 20, 4047 (2010).

    Article  Google Scholar 

  15. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, Nat. Photonics 7, 13 (2013).

    Article  ADS  Google Scholar 

  16. I-Ann Lei, Dai-Fu Lai, Trong-Ming Don, Wen-Chang Chen, Yang-Yen Yu, and Wen-Yen Chiu, Mater. Chem. Phys. 144, 41 (2014).

    Article  Google Scholar 

  17. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V.M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature (London) 460, 1110 (2009).

    Article  ADS  Google Scholar 

  18. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, Nano Lett. 12, 5769 (2012).

    Article  ADS  Google Scholar 

  19. I. I. Protsenko, Phys.-Usp. 55(10), 1040 (2012).

    Article  ADS  Google Scholar 

  20. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 90, 223110 (2007).

    Article  ADS  Google Scholar 

  21. A. Agrawal, C. Susut, G. Stafford, U. Bertocci, B. McMorran, H. J. Lezec, and A. A. Talin, Nano Lett. 11, 2774 (2011).

    Article  Google Scholar 

  22. J. Shen, X. Yang, Y. Zhu, H. Kang, H. Cao, and C. Li, Biosens. Bioelectron. 34, 132 (2012).

    Article  Google Scholar 

  23. T. I. Kuznetsova and V. S. Lebedev, Quantum Electron. 32(8), 727 (2002).

    Article  ADS  Google Scholar 

  24. R. Jones, H. Rong, A. Liu, A. W. Fang, D. Hak, and O. Cohen, Opt. Express 13, 519 (2005).

    Article  ADS  Google Scholar 

  25. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 016607 (2008).

    Article  ADS  Google Scholar 

  26. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 8, 13 (2014).

    Article  ADS  Google Scholar 

  27. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, Phys. Rev. Lett. 89, 210801 (2002).

    Article  ADS  Google Scholar 

  28. T. I. Kuznetsova, V. S. Lebedev, and A. M. Tsvelik, J. Opt. A: Pure Appl. Opt. 6, 338 (2004).

    Article  ADS  Google Scholar 

  29. L. Novotny and S. J. Stranick, Annu. Rev. Phys. Chem. 57, 303 (2006).

    Article  ADS  Google Scholar 

  30. C. Huber, A. Trügler, U. Hoheneste, Y. Priorc, and W. Kautek, Phys. Chem. Chem. Phys. 16, 2289 (2014).

    Article  Google Scholar 

  31. T. Yatsui, K. Isumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).

    Article  ADS  Google Scholar 

  32. T. I. Kuznetsova and V. S. Lebedev, JETP Lett. 79(2), 62 (2004).

    Article  ADS  Google Scholar 

  33. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. B: Condens. Matter, Mater. Phys. 70, 035107 (2004).

    Article  ADS  Google Scholar 

  34. V. M. Agranovich, Yu. N. Gartstein, and M. Litinskaya, Chem. Rev. 111, 5179 (2011).

    Article  Google Scholar 

  35. M. N. Bochkarev, A. G. Vitukhnovskii, and M. A. Katkova, Organic Light-Emitting Diodes (OLEDs) (DEKOM, Nizhni Novgorod, 2011).

    Google Scholar 

  36. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, Chem. Phys. Lett. 461, 171 (2008).

    Article  ADS  Google Scholar 

  37. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. Halas, Nano Lett. 8, 3481 (2008).

    Article  ADS  Google Scholar 

  38. V. S. Lebedev, A. G. Vitukhnovsky, A. Yoshida, N. Kometani, and Y. Yonezawa, Colloids Surf. A: Physicochem. Eng. Aspects 326, 204 (2008).

    Article  Google Scholar 

  39. A. Yoshida, Y. Yonezawa, and N. Kometani, Langmuir 25, 6683 (2009).

    Article  Google Scholar 

  40. A. Yoshida and N. Kometani, J. Phys. Chem. C 114, 2867 (2010).

    Article  Google Scholar 

  41. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovskii, Quantum Electron. 40(3), 246 (2010).

    Article  ADS  Google Scholar 

  42. V. S. Lebedev and A. S. Medvedev, Quantum Electron. 42(8), 701 (2012).

    Article  ADS  Google Scholar 

  43. V. S. Lebedev and A. S. Medvedev, Quantum Electron. 43(11), 1065 (2013).

    Article  ADS  Google Scholar 

  44. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, Nano Lett. 7, 1297 (2007).

    Article  ADS  Google Scholar 

  45. A. Yoshida, N. Uchida, and N. Kometani, Langmuir 25, 11802 (2009).

    Article  Google Scholar 

  46. B. I. Shapiro, E. S. Kol’tsova, A. G. Vitukhnovskii, D. A. Chubich, A. I. Tolmachev, and Yu. L. Slominskii, Nanotechnologies in Russia 6(7–8), 456 (2011).

    Article  Google Scholar 

  47. N. Zhao, T. P. Osedach, L.-Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, and V. Bulović, ACS Nano 4, 3743 (2010).

    Article  Google Scholar 

  48. S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, and S. Gradecak, Nano Lett. 11, 3998 (2011).

    Article  ADS  Google Scholar 

  49. G. Jin, H.-T. Wei, T.-Y. Na, H.-Z. Sun, H. Zhang, and B. Yang, ACS Appl. Mater. Interfaces 6, 8606 (2014).

    Article  Google Scholar 

  50. G. Seo, J. Seo, S. Ryu, W. Yin, T. K. Ahn, and S. I. Seok, J. Phys. Chem. Lett. 5, 2015 (2014).

    Article  Google Scholar 

  51. P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović, Phys. Rev. B: Condens. Matter 78, 085434 (2008).

    Article  ADS  Google Scholar 

  52. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, Nano Lett. 9, 2532 (2009).

    Article  ADS  Google Scholar 

  53. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, Nat. Photonics 5, 543 (2011).

    Article  ADS  Google Scholar 

  54. A. A. Vashchenko, V. S. Lebedev, A. G. Vitukhnovskii, R. B. Vasiliev, and I. G. Samatov, JETP Lett. 96(2), 113 (2012).

    Article  ADS  Google Scholar 

  55. A. G. Vitukhnovskii, A. A. Vashchenko, V. S. Lebedev, R. B. Vasiliev, P. N. Brunkov, and D. N. Bychkovskii, Semiconductors 47(7), 971 (2013).

    Article  ADS  Google Scholar 

  56. K. W. Song, R. Costi, and V. Bulović, Adv. Mater. (Weinheim) 25, 1420 (2013).

    Article  Google Scholar 

  57. M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, ACS Appl. Mater. Interfaces 5, 12369 (2013).

    Article  Google Scholar 

  58. K.-H. Lee, J.-H. Lee, H.-D. Kang, B. Park, Y. Kwon, H. Ko, C. Lee, J. Lee, and H. Yang, ACS Nano 8, 4893 (2014).

    Article  Google Scholar 

  59. J. I. Wong, N. Mishra, G. Xing, M. Li, S. Chakrabortty, T. C. Sum, Y. Shi, Y. Chan, and H. Y. Yang, ACS Nano 8, 2873 (2014).

    Article  Google Scholar 

  60. S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and A. L. Efros, Nat. Mater. 10, 936 (2011).

    Article  ADS  Google Scholar 

  61. M. D. Tessier, L. Biadala, C. Bouet, S. Ithurria, B. Abecassis, and B. Dubertret, ACS Nano 7, 3332 (2013).

    Article  Google Scholar 

  62. B. Mahler, B. Nadal, C. Bouet, G. Patriache, and B. Dubertret, J. Am. Chem. Soc. 134, 18591 (2012).

    Article  Google Scholar 

  63. M. D. Tessier, C. Javaux, I. Maksimović, V. Loriette, and B. Dubertret, ACS Nano 6, 6751 (2012).

    Article  Google Scholar 

  64. M. S. Sokolikova, R. B. Vasiliev, and A. M. Gaskov, Russ. J. Inorg. Chem. 59(5), 413 (2014).

    Article  Google Scholar 

  65. J. Feldmann, G. Peter, E. O. Goebel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliot, Phys. Rev. B: Condens. Matter 59, 2337 (1987).

    ADS  Google Scholar 

  66. Z. Chen, B. Nadal, B. Mahler, H. Aubin, and B. Dubertret, Adv. Funct. Mater. 24, 295 (2014).

    Article  Google Scholar 

  67. S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet, B. Abecassis, X. Xu, and B. Dubertret, Chem. Mater. 25, 2455 (2013).

    Article  Google Scholar 

  68. Z. Li and X. Peng, J. Am. Chem. Soc. 133, 6578 (2011).

    Article  Google Scholar 

  69. Z. Li, H. Qin, D. Guzin, M. Benamara, G. Salamo, and X. Peng, Nano Res. 5, 337 (2012).

    Article  Google Scholar 

  70. V. Wood, M. J. Panzer, J. M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, Nano Lett. 10, 24 (2010).

    Article  ADS  Google Scholar 

  71. L. Biadala, F. Liu, M. D. Tessier, D. R. Yakovlev, B. Dubertret, and M. Bayer, Nano Lett. 14, 1134 (2014).

    Article  ADS  Google Scholar 

  72. A. W. Achtstein, A. Schliwa, A. Prudnikau, M. Hardzei, M. V. Artemyev, C. Thomsen, and U. Woggon, Nano Lett. 12, 3151 (2012).

    Article  Google Scholar 

  73. K. Wang, S. Huang, Y. Zhang, S. Zhao, H. Zhang, and Y. Wanga, Chem. Sci. 4, 3288 (2013).

    Article  Google Scholar 

  74. L. Akcelrud, Prog. Polym. Sci. 28, 875 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Selyukov.

Additional information

Original Russian Text © A.S. Selyukov, A.G. Vitukhnovskii, V.S. Lebedev, A.A. Vashchenko, R.B. Vasiliev, M.S. Sokolikova, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 4, pp. 687–701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyukov, A.S., Vitukhnovskii, A.G., Lebedev, V.S. et al. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode. J. Exp. Theor. Phys. 120, 595–606 (2015). https://doi.org/10.1134/S1063776115040238

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115040238

Keywords

Navigation