Skip to main content
Log in

Analysis of the time structure of synchronization in multidimensional chaotic systems

Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Cite this article

Abstract

A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001).

    Book  Google Scholar 

  2. S. Boccaletti, J. Kurths, G. V. Osipov, D. L. Valladares, and C. S. Zhou, Phys. Rep. 366, 1 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. V. Yu. Argonov and S. V. Prants, JETP Lett. 80 (4), 231 (2004).

    Article  ADS  Google Scholar 

  4. S. P. Kuznetsov, Phys.-Usp. 54 (2), 119 (2011).

    Article  ADS  Google Scholar 

  5. A. P. Napartovich and A. G. Sukharev, J. Exp. Theor. Phys. 88 (5), 875 (1999).

    Article  ADS  Google Scholar 

  6. K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).

    Article  ADS  Google Scholar 

  7. L. Larger and J.-P. Goedgebuer, C. R. Phys. 5, 609 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Planat, Neuroquantology 2, 292 (2004); M. Planat, arXiv:quant-ph/0403020.

    Google Scholar 

  9. H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 53, 4528 (1996).

    Article  Google Scholar 

  10. L. M. Pecora and T. L. Caroll, Phys. Rev. Lett. 64, 821 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. W. Liu, X. Qian, J. Yang, and J. Xiao, Phys. Lett. A 354, 119 (2006).

    Article  ADS  Google Scholar 

  12. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 78, 4193 (1997).

    Article  ADS  Google Scholar 

  13. V. S. Anishchenko and D. E. Postnov, Sov. Tech. Phys. Lett. 14 (3), 254 (1988).

    MathSciNet  Google Scholar 

  14. A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 2291 (2000).

    MATH  MathSciNet  Google Scholar 

  15. A. A. Koronovskii and A. E. Khramov, JETP Lett. 79 (7), 316 (2004).

    Article  ADS  Google Scholar 

  16. Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov, Sov. Phys.-Usp. 30 (5), 353 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  17. B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).

    Article  MATH  ADS  Google Scholar 

  18. I. M. Dremin, Sov. Phys.-Usp. 30 (7), 649 (1987).

    Article  ADS  Google Scholar 

  19. S. F. Shandarin, A. G. Doroshkevich, and Ya. B. Zel’dovich, Sov. Phys.-Usp. 26 (1), 46 (1983).

    Article  ADS  Google Scholar 

  20. H. W. Broer, F. Dumortier, S. J. van Strien, and F. Takens, Structure in Dynamics: Finite Dimensional Deterministic Studies (Studies in Mathematical Physics) (North-Holland, Amsterdam, The Netherlands, 1991; Institute of Computer Science, Moscow, 2003).

    Google Scholar 

  21. O. V. Gerashchenko, J. Exp. Theor. Phys. 89 (4), 797 (1999).

    Article  ADS  Google Scholar 

  22. V. K. Tyumenev, J. Exp. Theor. Phys. 80 (4), 754 (1995).

    ADS  Google Scholar 

  23. M. Ghorbani, M. Mehta, R. Bruinsma, and A. J. Levine, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 021908 (2012).

    Article  ADS  Google Scholar 

  24. S. V. Borisov, A. Ya. Kaplan, N. L. Gorbachevskaya, and I. A. Kozlova, Hum. Physiol. 31 (3), 255 (2005).

    Article  Google Scholar 

  25. A. Porta, G. D’Addio, G. D. Pinna, R. Maestri, T. Gnecchi-Ruscone, R. Furlan, N. Montano, S. Guzzetti, and A. Malliani, Comput. Cardiol. 2005, 575 (2005).

    Google Scholar 

  26. P. Tino, C. Schittenkopf, and G. Dorffner, Pattern Anal. Appl. 4, 283 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Ashwin, J. Buescu, and I. Stewart, Phys. Lett. A 193, 126 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. D. Zueco, P. J. Martinez, L. M. Floria, and F. Falo, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 036613 (2005).

    Article  ADS  Google Scholar 

  29. V. Casagrande and A. S. Mikhailov, Physica D (Amsterdam) 205, 154 (2005).

    Article  MATH  ADS  Google Scholar 

  30. P. Palaniyandi, P. Muruganandam, and M. Lakshmanan, Chaos, Solitons, Fractals 36, 991 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  31. J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 69, 066215 (2004).

    Article  MathSciNet  Google Scholar 

  32. S. Ahn and L. L. Rubchinsky, Chaos 23, 013138 (2013).

    Article  ADS  Google Scholar 

  33. L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Nat. Commun. 5, 4079 (2014).

    Article  ADS  Google Scholar 

  34. F. Battiston, V. Nicosia, and V. Latora, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 032804 (2014).

    Article  ADS  Google Scholar 

  35. A. V. Makarenko, Tech. Phys. Lett. 38 (2), 155 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  36. A. V. Makarenko, Nanostrukt.: Mat. Fiz. Model. 8, 21 (2013).

    Google Scholar 

  37. A. V. Makarenko, in Abstracts of Papers of the International Conference “Advanced Finance and Stochastics,” Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia, June 24-28, 2013 Moscow, 2013, p. 63.

    Google Scholar 

  38. A. V. Makarenko, Tech. Phys. Lett. 38 (9), 804 (2012).

    Article  ADS  Google Scholar 

  39. A. V. Makarenko, Zh. Vychisl. Mat. Mat. Fiz. 52, 1248 (2012).

    MATH  MathSciNet  Google Scholar 

  40. R. Bouen, Methods of Symbolic Dynamics (Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  41. C. S. Hsu, Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems (Springer-Verlag, New York, 1987).

    Book  MATH  Google Scholar 

  42. M. Dellnitz and A. Hohmann, Numer. Math. 75, 293 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  43. R. Gilmore and M. Lefranc, The Topology of Chaos (Wiley, New York, 2002).

    MATH  Google Scholar 

  44. J. Davidsen, P. Grassberger, and M. Paczuski, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 066104 (2008).

    Article  MathSciNet  Google Scholar 

  45. M. Domenico, A. Sole-Ribalta, E. Cozzo, M. Kivela, Y. Moreno, M. A. Porter, S. Gomez, and A. Arenas, Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  46. P. Fiedor, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 052801 (2014).

    Article  ADS  Google Scholar 

  47. G. Bianconi, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87, 062806 (2013).

    Article  Google Scholar 

  48. A. V. Shabunin, V. V. Demidov, V. V. Astakhov, and V. S. Anishchenko, Tech. Phys. Lett. 27 (6), 476 (2001).

    Article  ADS  Google Scholar 

  49. E. Mosekilde, Yu. Maistrenko, and D. Postnov, Chaotic Synchronization: Applications to Living Systems (World Scientific, Singapore, 2002).

    Google Scholar 

  50. M. J. Feigenbaum, Los Alamos Sci. 1, 4 (1980).

    MathSciNet  Google Scholar 

  51. E. L. Lehmann, Testing Statistical Hypotheses (John Wiley and Sons, New York, 1959; Nauka, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarenko.

Additional information

Original Russian Text © A.V. Makarenko, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 5, pp. 1053–1063.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarenko, A.V. Analysis of the time structure of synchronization in multidimensional chaotic systems. J. Exp. Theor. Phys. 120, 912–921 (2015). https://doi.org/10.1134/S106377611504010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611504010X

Keywords

Navigation