Abstract
A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.
This is a preview of subscription content,
to check access.References
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001).
S. Boccaletti, J. Kurths, G. V. Osipov, D. L. Valladares, and C. S. Zhou, Phys. Rep. 366, 1 (2002).
V. Yu. Argonov and S. V. Prants, JETP Lett. 80 (4), 231 (2004).
S. P. Kuznetsov, Phys.-Usp. 54 (2), 119 (2011).
A. P. Napartovich and A. G. Sukharev, J. Exp. Theor. Phys. 88 (5), 875 (1999).
K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
L. Larger and J.-P. Goedgebuer, C. R. Phys. 5, 609 (2004).
M. Planat, Neuroquantology 2, 292 (2004); M. Planat, arXiv:quant-ph/0403020.
H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 53, 4528 (1996).
L. M. Pecora and T. L. Caroll, Phys. Rev. Lett. 64, 821 (1990).
W. Liu, X. Qian, J. Yang, and J. Xiao, Phys. Lett. A 354, 119 (2006).
M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 78, 4193 (1997).
V. S. Anishchenko and D. E. Postnov, Sov. Tech. Phys. Lett. 14 (3), 254 (1988).
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 2291 (2000).
A. A. Koronovskii and A. E. Khramov, JETP Lett. 79 (7), 316 (2004).
Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov, Sov. Phys.-Usp. 30 (5), 353 (1987).
B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).
I. M. Dremin, Sov. Phys.-Usp. 30 (7), 649 (1987).
S. F. Shandarin, A. G. Doroshkevich, and Ya. B. Zel’dovich, Sov. Phys.-Usp. 26 (1), 46 (1983).
H. W. Broer, F. Dumortier, S. J. van Strien, and F. Takens, Structure in Dynamics: Finite Dimensional Deterministic Studies (Studies in Mathematical Physics) (North-Holland, Amsterdam, The Netherlands, 1991; Institute of Computer Science, Moscow, 2003).
O. V. Gerashchenko, J. Exp. Theor. Phys. 89 (4), 797 (1999).
V. K. Tyumenev, J. Exp. Theor. Phys. 80 (4), 754 (1995).
M. Ghorbani, M. Mehta, R. Bruinsma, and A. J. Levine, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 021908 (2012).
S. V. Borisov, A. Ya. Kaplan, N. L. Gorbachevskaya, and I. A. Kozlova, Hum. Physiol. 31 (3), 255 (2005).
A. Porta, G. D’Addio, G. D. Pinna, R. Maestri, T. Gnecchi-Ruscone, R. Furlan, N. Montano, S. Guzzetti, and A. Malliani, Comput. Cardiol. 2005, 575 (2005).
P. Tino, C. Schittenkopf, and G. Dorffner, Pattern Anal. Appl. 4, 283 (2001).
P. Ashwin, J. Buescu, and I. Stewart, Phys. Lett. A 193, 126 (1994).
D. Zueco, P. J. Martinez, L. M. Floria, and F. Falo, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 036613 (2005).
V. Casagrande and A. S. Mikhailov, Physica D (Amsterdam) 205, 154 (2005).
P. Palaniyandi, P. Muruganandam, and M. Lakshmanan, Chaos, Solitons, Fractals 36, 991 (2008).
J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 69, 066215 (2004).
S. Ahn and L. L. Rubchinsky, Chaos 23, 013138 (2013).
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Nat. Commun. 5, 4079 (2014).
F. Battiston, V. Nicosia, and V. Latora, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 032804 (2014).
A. V. Makarenko, Tech. Phys. Lett. 38 (2), 155 (2012).
A. V. Makarenko, Nanostrukt.: Mat. Fiz. Model. 8, 21 (2013).
A. V. Makarenko, in Abstracts of Papers of the International Conference “Advanced Finance and Stochastics,” Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia, June 24-28, 2013 Moscow, 2013, p. 63.
A. V. Makarenko, Tech. Phys. Lett. 38 (9), 804 (2012).
A. V. Makarenko, Zh. Vychisl. Mat. Mat. Fiz. 52, 1248 (2012).
R. Bouen, Methods of Symbolic Dynamics (Mir, Moscow, 1979) [in Russian].
C. S. Hsu, Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems (Springer-Verlag, New York, 1987).
M. Dellnitz and A. Hohmann, Numer. Math. 75, 293 (1997).
R. Gilmore and M. Lefranc, The Topology of Chaos (Wiley, New York, 2002).
J. Davidsen, P. Grassberger, and M. Paczuski, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 066104 (2008).
M. Domenico, A. Sole-Ribalta, E. Cozzo, M. Kivela, Y. Moreno, M. A. Porter, S. Gomez, and A. Arenas, Phys. Rev. X 3, 041022 (2013).
P. Fiedor, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 052801 (2014).
G. Bianconi, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87, 062806 (2013).
A. V. Shabunin, V. V. Demidov, V. V. Astakhov, and V. S. Anishchenko, Tech. Phys. Lett. 27 (6), 476 (2001).
E. Mosekilde, Yu. Maistrenko, and D. Postnov, Chaotic Synchronization: Applications to Living Systems (World Scientific, Singapore, 2002).
M. J. Feigenbaum, Los Alamos Sci. 1, 4 (1980).
E. L. Lehmann, Testing Statistical Hypotheses (John Wiley and Sons, New York, 1959; Nauka, Moscow, 1979).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.V. Makarenko, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 5, pp. 1053–1063.
Rights and permissions
About this article
Cite this article
Makarenko, A.V. Analysis of the time structure of synchronization in multidimensional chaotic systems. J. Exp. Theor. Phys. 120, 912–921 (2015). https://doi.org/10.1134/S106377611504010X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S106377611504010X