Skip to main content
Log in

Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  2. W. Andreoni, in Physics and Chemistry of Materials with Low-Dimensional Structures, Ed. by F. Levy and E. Mooser (Springer, Berlin, 2000), Vol. 23, p. 448.

  3. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998), p. 259.

    Book  Google Scholar 

  4. P. R. Wallace, Rev. Mod. Phys. 71, 622 (1947).

    Article  MATH  Google Scholar 

  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  6. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S.Novoselov, T. J. Booth, and S. Roth, Nature (London) 446, 60 (2007).

    Article  ADS  Google Scholar 

  7. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  9. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).

    Article  ADS  Google Scholar 

  10. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).

    Article  Google Scholar 

  11. V. V. Cheianov, V. I. Fal’ko, and B. L. Altshuler, Science (Washington) 315, 1252 (2007).

    Article  ADS  Google Scholar 

  12. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  ADS  Google Scholar 

  13. P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C. W. J. Beenakker, and A. F. Morpurgo, Phys. Rev. B: Condens. Matter 76, 235404 (2007).

    Article  ADS  Google Scholar 

  14. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97, 016801 (2006).

    Article  ADS  Google Scholar 

  15. F. Sols, F. Guinea, and A. H. Castro Neto, Phys. Rev. Lett. 99, 166803 (2007).

    Article  ADS  Google Scholar 

  16. V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy, Phys. Rev. B: Condens. Matter 74, 195429 (2006).

    Article  ADS  Google Scholar 

  17. C.-H. Zhang and Y. N. Joglekar, Phys. Rev. B: Condens. Matter 75, 245414 (2007).

    Article  ADS  Google Scholar 

  18. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B: Condens. Matter 72, 174406 (2005).

    Article  ADS  Google Scholar 

  19. F. Rana, IEEE Trans. Nanotechnol. 7, 91 (2008).

    Article  ADS  Google Scholar 

  20. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar Phys. Rev. B: Condens. Matter 87, 075416 (2013).

    Article  ADS  Google Scholar 

  21. A. S. Mayorov, D. C. Elias, M. Mucha-Kruczynski, R. V. Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Morozov, M. I. Katsnelson, V. I. Fal’ko, A. K. Geim, and K. S. Novoselov, Science (Washington) 333, 860 (2011).

    Article  ADS  Google Scholar 

  22. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photonics 6, 749 (2012).

    Article  ADS  Google Scholar 

  23. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007).

    Article  ADS  Google Scholar 

  24. A. A. Bulgakov and V. R. Kovtun, Opt. Spectrosc. 56(5), 471 (1984).

    ADS  Google Scholar 

  25. A. A. Bulgakov and V. R. Kovtun, Solid State Commun. 56, 781 (1985).

    Article  ADS  Google Scholar 

  26. I. E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932).

    Google Scholar 

  27. M. E. Sasin, R. P. Seisyan, and M. A. Kaliteevski, Superlattices Microstruct. 47, 44 (2010).

    Article  ADS  Google Scholar 

  28. A. Kavokin, I. Shelykh, and G. Malpuech, Appl. Phys. Lett. 87, 261105 (2005).

    Article  ADS  Google Scholar 

  29. I. Iorsh, P. V. Panicheva, V. A. Slovinskii, and M. A. Kaliteevski, Tech. Phys. Lett. 38(4), 351 (2012).

    Article  ADS  Google Scholar 

  30. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, Phys. Rev. B: Condens. Matter 74, 045128 (2006).

    Article  ADS  Google Scholar 

  31. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, Phys. Rev. Lett. 101, 113902 (2008).

    Article  ADS  Google Scholar 

  32. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, Phys.—Usp. 53(3), 243 (2010).

    Article  ADS  Google Scholar 

  33. F. G. Bass and A. P. Tetervov, Phys. Rep. 140, 237 (1986).

    Article  ADS  Google Scholar 

  34. D. P. Belozorov, M. K. Khodzitsky, and S. I. Tarapov, J. Phys. D: Appl. Phys. 42, 055003 (2009).

    Article  ADS  Google Scholar 

  35. Yu. O. Averkov, N. N. Beletskii, and V. M. Yakovenko, Radiofiz. Elektron. (Kharkov) 2(16), 40 (2011).

    Google Scholar 

  36. Yu. O. Averkov, N. N. Beletskii, S. I. Tarapov, et al., Radiofiz. Elektron. (Kharkov) 3(17), 48 (2012).

    Google Scholar 

  37. Yu. O. Averkov, S. I. Tarapov, A. A. Kharchenko, and V. M. Yakovenko, Low Temp. Phys. 40(7), 667 (2014).

    Article  ADS  Google Scholar 

  38. S. I. Tarapov and D. P. Belozorov, Low Temp. Phys. 38(7), 603 (2012).

    Article  ADS  Google Scholar 

  39. D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, Phys. Rev. B: Condens. Matter 89, 245414 (2014).

    Article  ADS  Google Scholar 

  40. Yu. O. Averkov, V. M. Yakovenko, V. A. Yampol’skii, and Franco Nori, Phys. Rev. B: Condens. Matter 90, 045415 (2014).

    Article  ADS  Google Scholar 

  41. Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 246803 (2007).

    Article  ADS  Google Scholar 

  42. X. Hong, K. Zou, and J. Zhu, Phys. Rev. B: Condens. Matter 80, 241415 (2009).

    Article  ADS  Google Scholar 

  43. A. S. Borovik-Romanov, Lectures on Low-Temperature Magnetism (Moscow State University, Moscow, 2010), p. 48 [in Russian].

    Google Scholar 

  44. F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, J. Opt. Soc. Am. B 28, 306 (2011).

    Article  ADS  Google Scholar 

  45. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001), p. 131 [in Russian].

    Google Scholar 

  46. I. M. Lifshitz and S. I. Pekar, Usp. Fiz. Nauk 56, 531 (1955).

    Article  Google Scholar 

  47. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989), p. 23 [in Russian].

    Google Scholar 

  48. L. A. Falkovsky, J. Exp. Theor. Phys. 106(3), 575 (2008).

    Article  ADS  Google Scholar 

  49. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965; Nauka, Moscow, 1979), p. 807.

    Google Scholar 

  50. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., in Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997), p. 549.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Averkov.

Additional information

Original Russian Text © Yu.O. Averkov, S.I. Tarapov, V.M. Yakovenko, V.A. Yampol’skii, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 147, No. 4, pp. 811–819.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averkov, Y.O., Tarapov, S.I., Yakovenko, V.M. et al. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system. J. Exp. Theor. Phys. 120, 702–709 (2015). https://doi.org/10.1134/S1063776115020016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115020016

Keywords

Navigation