Skip to main content
Log in

NMR dynamics of quantum discord for spin-carrying gas molecules in a closed nanopore

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A local orthogonal transformation that transforms any centrosymmetric density matrix of a two-qubit system to the X form has been found. A piecewise-analytic-numerical formula Q = min{Q π/2, Q θ, Q 0}, where Q π/2 and Q 0 are analytical expressions and the branch Q 0 θ can be obtained only by numerically searching for the optimal measurement angle θ ∈ (0, π/2), is proposed to calculate the quantum discord Q of a general X state. The developed approaches have been applied for a quantitative description of the recently predicted flickering (periodic disappearance and reappearance) of the quantum-information pair correlation between nuclear 1/2 spins of atoms or molecules of a gas (for example, 129Xe) in a bounded volume in the presence of a strong magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Céleri, J. Maziero, and R. M. Serra, Int. J. Quantum Inf. 9, 1837 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, Rev. Mod. Phys. 84, 1655 (2012).

    Article  ADS  Google Scholar 

  3. S. M. Aldoshin, E. B. Fel’dman, and M. A. Yurishchev, Low Temp. Phys. 40(1), 3 (2014).

    Article  ADS  Google Scholar 

  4. Y. Huang, New J. Phys. 16, 033027 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Luo, Phys. Rev. A: At., Mol., Opt. Phys. 77, 042303 (2008).

    Article  ADS  Google Scholar 

  6. T. Yu and J. H. Eberly, Quantum Inf. Comput. 7, 459 (2007).

    MATH  MathSciNet  Google Scholar 

  7. A. R. P. Rau, J. Phys. A: Math. Theor. 42, 0412002 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A: At., Mol., Opt. Phys. 81, 042105 (2010); M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A: At., Mol., Opt. Phys. 82, 069902(E) (2010).

    Article  ADS  Google Scholar 

  9. F. F. Fanchini, T. Werlang, C. A. Brasil, G. E. Arruda, and A. O. Caldeira, Phys. Rev. A: At., Mol., Opt. Phys. 81, 052107 (2010).

    Article  ADS  Google Scholar 

  10. B. Li, Z.-X. Wang, and S.-M. Fei, Phys. Rev. A: At., Mol., Opt. Phys. 83, 022321 (2011).

    Article  ADS  Google Scholar 

  11. B.-F. Ding, X.-Y. Wang, and H.-P. Zhao, Chin. Phys. B 20, 100302 (2011).

    Article  ADS  Google Scholar 

  12. X.-M. Lu, J. Ma, Z. Xi, and X. Wang, Phys. Rev. A: At., Mol., Opt. Phys. 83, 012327 (2011).

    Article  ADS  Google Scholar 

  13. Q. Chen, C. Zhang, S. Yu, X. X. Yi, and C. H. Oh, Phys. Rev. A: At., Mol., Opt. Phys. 84, 042313 (2011).

    Article  ADS  Google Scholar 

  14. Y. Huang, Phys. Rev. A: At., Mol., Opt. Phys. 88, 014302 (2013).

    Article  ADS  Google Scholar 

  15. J. Baugh, A. Kleinhammes, D. Han, Q. Wang, and Y. Wu, Science (Washington) 294, 1505 (2001).

    Article  ADS  Google Scholar 

  16. W. S. Warren, Science (Washington) 294, 1475 (2001).

    Article  Google Scholar 

  17. E. B. Fel’dman and M. G. Rudavets, J. Exp. Theor. Phys. 98(2), 207 (2004).

    Article  ADS  Google Scholar 

  18. A. V. Fedorova, E. B. Fel’dman, and D. E. Polianczyk, Appl. Magn. Reson. 35, 511 (2009).

    Article  Google Scholar 

  19. J. Jeener, J. Chem. Phys. 134, 114519 (2011).

    Article  ADS  Google Scholar 

  20. E. B. Fel’dman, G. B. Furman, and S. D. Goren, Soft Matter 8, 9200 (2012).

    Article  ADS  Google Scholar 

  21. M. G. Rudavets, J. Magn. Reson. 230, 10 (2013).

    Article  ADS  Google Scholar 

  22. E. B. Fel’dman, E. I. Kuznetsova, and M. A. Yurishchev, J. Phys. A: Math. Theor. 45, 475304 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, Phys. Rev. Lett. 107, 153601 (2011).

    Article  ADS  Google Scholar 

  24. J. R. Weaver, Am. Math. Mon. 92, 711 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  25. Kh. D. Ikramov, Zh. Vychisl. Mat. Mat. Fiz. 33, 620 (1993).

    MATH  MathSciNet  Google Scholar 

  26. A. Andrew, SIAM Rev. 40, 697 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. E. S. Venttsel’, The Probability Theory (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  28. V. P. Chistyakov, A Course of the Probability Theory (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  29. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1984).

    Google Scholar 

  30. C. E. Shannon, The Mathematical Theory of Communication (University of Illinois, Chicago, United States, 1963; Inostrannaya Literatura, Moscow, 1963).

    MATH  Google Scholar 

  31. R. L. Stratonovich, The Theory of Information (Sovetskoe Radio, Moscow, 1975) [in Russian].

    Google Scholar 

  32. V. V. Panin, Fundamentals of the Theory of Information (BINOM, Moscow, 2007) [in Russian].

    Google Scholar 

  33. E. M. Gabidulin and N. I. Pilipchuk, Lectures on the Theory of Information (Moscow Engineering Physics Institute, Moscow, 2007) [in Russian].

    Google Scholar 

  34. A. S. Holevo, Introduction to the Quantum Information Theory (MTsNMO, Moscow, 2003) [in Russian].

    Google Scholar 

  35. A. S. Holevo, Quantum Systems, Channels, and Information: A Mathematical Introduction (MTsNMO, Moscow, 2010; Walter De Gruyter, Berlin, 2012).

    Google Scholar 

  36. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000; Mir, Moscow, 2006).

    MATH  Google Scholar 

  37. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2002).

    Article  ADS  Google Scholar 

  38. M. A. Yurishchev, arXiv:1302.5239 [quant-ph].

  39. L. Ciliberti, R. Rossignoli, and N. Canosa, Phys. Rev. A: At., Mol., Opt. Phys. 82, 042316 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  40. M. A. Yurischev, arXiv:1404.5735 [quant-ph].

  41. M. A. Yurishchev, Phys. Rev. B: Condens. Matter 84, 024418 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yurishchev.

Additional information

Original Russian Text © M.A. Yurishchev, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 946–956.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurishchev, M.A. NMR dynamics of quantum discord for spin-carrying gas molecules in a closed nanopore. J. Exp. Theor. Phys. 119, 828–837 (2014). https://doi.org/10.1134/S106377611411020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611411020X

Keywords

Navigation