Skip to main content
Log in

Self-similar turbulent boundary layer with imposed pressure gradient. Four flow regimes

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Self-similar flows of an incompressible fluid in a turbulent boundary layer, when the free-stream velocity is a power function (with the exponent m) of the longitudinal coordinate, have been studied. It has been shown that there are four different self-similar flow regimes corresponding to four individual similarity parameters one of which is the known Clauser parameter and the three other parameters have been established for the first time. At adverse pressure gradient, when the exponent m lies in a certain range depending on Reynolds number, the problem has two solutions with different values of the boundary-layer thickness and skin friction; consequently, hysteresis in a pre-separation flow is possible. Separation occurs not at the minimal value of m that corresponds to the strongest adverse pressure gradient, but at m = −0.216 −0.4 Re −1/3 p + O(Re −2/3 p ), where Re p is the Reynolds number based on longitudinal pressure gradient. The theoretical results are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, New York, 1976).

    MATH  Google Scholar 

  2. F. H. Clauser, J. Aeronaut. Sci. 21, 91 (1954).

    Article  Google Scholar 

  3. F. H. Clauser, Adv. Appl. Mech. 4, 1 (1956).

    Article  Google Scholar 

  4. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, Massachusetts, United States, 1972).

    Google Scholar 

  5. J. C. Rotta, Prog. Aerosp. Sci. 2, 3 (1962).

    Article  Google Scholar 

  6. W. H. Schofield, J. Fluid Mech. 113, 91 (1981).

    Article  ADS  MATH  Google Scholar 

  7. G. L. Mellor and D. M. Gibson, J. Fluid Mech. 24, 225 (1966).

    Article  ADS  Google Scholar 

  8. P. Bradshaw, J. Fluid Mech. 29, 625 (1967).

    Article  ADS  Google Scholar 

  9. L. F. East, W. G. Sawyer, and C. R. Nash, Tech. Rep.— R. Aircr. Establ. (G. B.), No. 79040 (1979).

    Google Scholar 

  10. M. R. Head, J. Fluid Mech. 73, 1 (1976).

    Article  ADS  Google Scholar 

  11. B. Scheichl and A. Kluwick, in Progress in Turbulence, Ed. by J. Peinke, A. Kittel, S. Barth, and M. Oberlack (Springer-Verlag, Berlin, 2005), Ch. 3, p. 111.

  12. I. I. Vigdorovich, J. Exp. Theor. Phys. 117(2), 356 (2013).

    Article  ADS  Google Scholar 

  13. I. I. Vigdorovich, Dokl. Phys. 48(9), 528 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. I. I. Vigdorovich, J. Exp. Theor. Phys. 99(5), 1028 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. I. Vigdorovich, J. Exp. Theor. Phys. 101(4), 741 (2005).

    Article  ADS  Google Scholar 

  16. I. I. Vigdorovich, J. Exp. Theor. Phys. 104(6), 972 (2007).

    Article  ADS  Google Scholar 

  17. I. I. Vigdorovich, Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 106 (1993).

    Google Scholar 

  18. Th. von Kármán, in Mechanische Ähnlichkeit und Turbulenz, Proceedings of the Third International Congress Applied Mechanics, Stockholm, Sweden, August 24–29, 1930, Vol. 1, Ed. by C. W. Oseen and W. Weibull (Aktiebolaget Sveriges Litografiska Tryckerier, Stockholm, Sweden, 1931), pp. 85–93.

  19. P. E. Skåre and P.-Å. Krogstad, J. Fluid Mech. 272, 319 (1994).

    Article  ADS  Google Scholar 

  20. B. A. Kader and A. M. Yaglom, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 18, 3 (1984).

    Google Scholar 

  21. M. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964; Mir, Moscow, 1967).

    MATH  Google Scholar 

  22. P. Bradshaw and D. Ferriss, Natl. Phys. Lab. Aeronaut. Rep., No. 1145 (1965).

    Google Scholar 

  23. P. Bradshaw, Natl. Phys. Lab. Aeronaut. Rep., No. 1184 (1966).

    Google Scholar 

  24. P. S. Andersen, W. M. Kays, and R. J. Moffat, Rep. HMT-15, Stanford Univ. (1972).

    Google Scholar 

  25. B. S. Stratford, J. Fluid Mech. 5, 17 (1959).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. A. F. Orlando, R. J. Moffat, and W. M. Kays, Rep. HMT-17, Stanford Univ. (1974).

    Google Scholar 

  27. M. Skote, D. S. Henningson, and R. A. W. M. Henkes, Flow, Turbul. Combust. 60, 47 (1998).

    Article  MATH  Google Scholar 

  28. R. E. Melnik, Comput. Fluids 17(1), 165 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  29. G. N. Abramovich, Applied Gas Dynamics, 5th ed. (Nauka, Moscow, 1991), Ch. 1 [in Russian].

    Google Scholar 

  30. P. R. Spalart, J. Fluid Mech. 187, 61 (1988).

    Article  ADS  MATH  Google Scholar 

  31. S. Hoyas and J. Jimenez, Phys. Fluids 18, 011702-1 (2006).

    Article  ADS  Google Scholar 

  32. H. Ludwieg and W. Tillmann, Ing.-Arch. 17, 288 (1949).

    Article  MATH  Google Scholar 

  33. W. J. Bauer, PhD Thesis (State University of Iowa, Iowa City, United States, 1951).

  34. H. J. Herring and J. F. Norbury, J. Fluid Mech. 27, 541 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Vigdorovich.

Additional information

Original Russian Text © I.I. Vigdorovich, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 1062–1089.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigdorovich, I.I. Self-similar turbulent boundary layer with imposed pressure gradient. Four flow regimes. J. Exp. Theor. Phys. 119, 933–957 (2014). https://doi.org/10.1134/S1063776114110193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110193

Keywords

Navigation