Skip to main content
Log in

Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO2 probed by NMR

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have carried out 63,65Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO2. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kawamura and S. Miyashita, J. Phys. Soc. Jpn. 54, 4530 (1985).

    Article  ADS  Google Scholar 

  2. S. E. Korshunov, J. Phys. C: Solid State Phys. 19, 5927 (1986).

    Article  ADS  Google Scholar 

  3. P. W. Anderson, Science (Washington) 235, 1196 (1987).

    Article  ADS  Google Scholar 

  4. M. L. Plumer and A. Caille, Phys. Rev. B: Condens. Matter 42, 10388 (1990).

    Article  ADS  Google Scholar 

  5. A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).

    ADS  Google Scholar 

  6. E. Rastelli and A. Tassi, J. Phys.: Condens. Matter 8, 1811 (1996).

    ADS  Google Scholar 

  7. S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008).

    Article  ADS  Google Scholar 

  8. K. Kimura, H. Nakamura, K. Ohgushi, and T. Kimura, Phys. Rev. B: Condens. Matter 78, 140401(R) (2008).

    Article  ADS  Google Scholar 

  9. K. Kimura, H. Nakamura, S. Kimura, M. Hagiwara, and T. Kimura, Phys. Rev. Lett. 103, 107201 (2009).

    Article  ADS  Google Scholar 

  10. M. Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, and G. Andre, Phys. Rev. B: Condens. Matter 79, 014412 (2009).

    Article  ADS  Google Scholar 

  11. K. Kimura, T. Otani, H. Nakamura, Y. Wakabayashi, and T. Kimura, J. Phys. Soc. Jpn. 78, 113710 (2009).

    Article  ADS  Google Scholar 

  12. H. Kadowaki, H. Kikuchi, and Y. Ajiro, J. Phys.: Condens. Matter 2, 4485 (1990).

    ADS  Google Scholar 

  13. M. Soda, K. Kimura, T. Kimura, M. Matsuura, and K. Hirota, J. Phys. Soc. Jpn. 78, 124703 (2009).

    Article  ADS  Google Scholar 

  14. M. Soda, K. Kimura, T. Kimura, and K. Hirota, Phys. Rev. B: Condens. Matter 81, 100406(R) (2010).

    Article  ADS  Google Scholar 

  15. M. Frontzek, G. Ehlers, A. Podlesnyak, H. Cao, M. Matsuda, O. Zaharko, N. Aliouane, S. Barilo, and S. V. Shiryaev, J. Phys.: Condens. Matter 24, 016004 (2012).

    ADS  Google Scholar 

  16. O. Aktas, G. Quirion, T. Otani, and T. Kimura, Phys. Rev. B: Condens. Matter 88, 224104 (2013).

    Article  ADS  Google Scholar 

  17. V. I. Marchenko, Zh. Exsp. Teor. Fiz. 146, 12 (2014).

    Google Scholar 

  18. A. M. Vasiliev, L. A. Prozorova, L. E. Svistov, V. Tsurkan, V. Dziom, A. Shuvaev, Anna Pimenov, and A. Pimenov, Phys. Rev. B: Condens. Matter 88, 144403 (2013).

    Article  ADS  Google Scholar 

  19. M. Poienar, F. Damay, C. Martin, J. Robert, and S. Petit, Phys. Rev. B: Condens. Matter 81, 104411 (2010).

    Article  ADS  Google Scholar 

  20. T. Okuda, N. Jufuku, S. Hidaka, and N. Terada, Phys. Rev. B: Condens. Matter 72, 144403 (2005).

    Article  ADS  Google Scholar 

  21. A. G. Smolnikov, V. V. Ogloblichev, A. Yu. Yakubovsky, Yu. V. Piskunov, S. V. Verkhovskii, A. P. Gerashenko, K. N. Mikhalev, K. Kumagai, and S. Barilo, in Proceedings of the XIV International Youth Scientific School, Kazan, Russia, June 20–25, 2011 (Kazan, 2011), p. 65.

    Google Scholar 

  22. I. M. Vitebskii, O. A. Petrenko, S. V. Petrov, and L. A. Prozorova, J. Exp. Theor. Phys. 76(1), 178 (1993).

    ADS  Google Scholar 

  23. S. S. Sosin, L. A. Prozorova, and M. E. Zhitomisrsky, JETP Lett. 79(2), 91 (2004).

    Article  ADS  Google Scholar 

  24. M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic, C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park, Q. Huang, A. Ya. Shapiro, and L. A. Demianets, Phys. Rev. Lett. 98, 267205 (2007).

    Article  ADS  Google Scholar 

  25. Eundeok Mun, M. Frontzek, A. Podlesnyak, G. Ehlers, S. Barilo, S. V. Shiryaev, and Vivien S. Zapf, Phys. Rev. B: Condens. Matter 89, 054411 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Svistov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhratov, Y.A., Svistov, L.E., Kuhns, P.L. et al. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO2 probed by NMR. J. Exp. Theor. Phys. 119, 880–890 (2014). https://doi.org/10.1134/S1063776114110181

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110181

Keywords

Navigation