Skip to main content
Log in

Energy spectrum and optical properties of C74 fullerene within the Hubbard model

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The energy spectrum and the optical absorption spectrum of C74 fullerene are calculated within the Hubbard model with regard to strong Coulomb correlations. It is shown that, due to the strong correlations, the energy spectrum is split into two 5.732 eV wide Hubbard subbands. The gap between these subbands is the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and is equal to 1.268 eV. From the energy spectrum obtained, the optical absorption spectra of both pure fullerene and M@C74 metal fullerenes, where M is a metal of valence 1, 2, 3, or 4, are calculated. For M = Ca, Sr, Ba, or Eu, the optical absorption spectrum at wavelengths λ < 1000 nm well agrees with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hatakeyama, T. Hirata, H. Ishida, T. Hayashi, and N. Sato, Thin Solid Films 316, 51 (1998).

    Article  ADS  Google Scholar 

  2. P. Kuran, M. Krause, A. Bartl, and L. Dunsch. Chem. Phys. Lett. 292, 580 (1998).

    Article  ADS  Google Scholar 

  3. X.-D. Wang, T. Hashizume, Q. Xue, H. Shinohara, Y. Saito, Y. Nishina, and T. Sakurai, Jpn. J. Appl. Phys. 32(Part 2), 866 (1993).

    Article  ADS  Google Scholar 

  4. T. S. M. Wan, H. W. Zhang, T. Nakane, Z. Xu, M. Inakuma, H. Shinohara, K. Kobayashi, and S. Nagase, J. Am. Chem. Soc. 120, 6806 (1998).

    Article  Google Scholar 

  5. O. Haufe, A. Reich, C. Moschel, and M. Z. Jansen, Anorg. Allg. Chem. 627, 23 (2001).

    Article  Google Scholar 

  6. C. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003).

    Google Scholar 

  7. M. D. Diener and J. M. Alford, Nature (London) 393, 668 (1998).

    Article  ADS  Google Scholar 

  8. A. A. Levin, Solid State Quantum Chemistry (Khimiya, Moscow, 1974; McGraw-Hill, New York, 1977).

    Google Scholar 

  9. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blügel Phys. Rev. Lett. 106, 236805 (2011).

    Article  ADS  Google Scholar 

  10. D. A. Bovchar and D. E. Gal’pern, Dokl. Akad. Nauk SSSR 209, 610 (1973).

    Google Scholar 

  11. G. I. Mironov and A. I. Murzashev, Phys. Solid State 53(11), 2393 (2011).

    Article  ADS  Google Scholar 

  12. A. I. Murzashev, Russ. Phys. J. 55(5), 524 (2012).

    Article  Google Scholar 

  13. B. V. Lobanov and A. I. Murzashev, Phys. Solid State 55(4), 868 (2013).

    Article  ADS  Google Scholar 

  14. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    Article  ADS  Google Scholar 

  15. V. V. Loskutov, G. I. Mironov, and R. R. Nigmatulin, Low Temp. Phys. 22(3), 220 (1996).

    ADS  Google Scholar 

  16. G. I. Mironov, Phys. Solid State 41(6), 864 (1999).

    Article  ADS  Google Scholar 

  17. R. R. Nigmatullin, A. A. Khamzin, and I. I. Popov, J. Exp. Theor. Phys. 114(2), 314 (2012).

    Article  ADS  Google Scholar 

  18. A. I. Murzashev and E. O. Shadrin, J. Exp. Theor. Phys. 118(6), 935 (2014).

    Article  ADS  Google Scholar 

  19. Yu. A. Izyumov and E. Z. Kurmaev, Phys.—Usp. 51(1), 23 (2008).

    Article  ADS  Google Scholar 

  20. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1975; Springer-Verlag, New York, 1995).

    Google Scholar 

  21. A. V. Eletskii, Phys.—Usp. 43(2), 111 (2000).

    Article  ADS  Google Scholar 

  22. G. I. Mironov, Phys. Solid State 50(1), 188 (2008).

    Article  ADS  Google Scholar 

  23. P. Kuran, M. Krause, A. Bartl, and L. Dunsch, Chem. Phys. Lett. 292, 580 (1998).

    Article  ADS  Google Scholar 

  24. A. Grupp, O. Haufe, M. Hecht, M. Mehring, and M. Jansen, AIP Conf. Proc. 723, 12 (2004). doi: 10.1063/1.1812033

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Nazarova.

Additional information

Original Russian Text © A.I. Murzashev, T.I. Nazarova, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 1026–1034.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzashev, A.I., Nazarova, T.I. Energy spectrum and optical properties of C74 fullerene within the Hubbard model. J. Exp. Theor. Phys. 119, 902–909 (2014). https://doi.org/10.1134/S106377611411017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611411017X

Keywords

Navigation