Skip to main content
Log in

Application of a generalized matrix averaging method for the calculation of the effective properties of thin multiferroic layers

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is proposed to use a generalized matrix averaging (GMA) method for calculating the parameters of an effective medium with physical properties equivalent to those of a set of thin multiferroic layers. This approach obviates the need to solve a complex system of magnetoelectroelasticity equations. The required effective characteristics of a system of multiferroic layers are obtained using only operations with matrices, which significantly simplifies calculations and allows multilayer systems to be described. The proposed approach is applicable to thin-layer systems, in which the total thickness is much less than the system length, radius of curvature, and wavelengths of waves that can propagate in the system (long-wave approximation). Using the GMA method, it is also possible to obtain the effective characteristics of a periodic structure with each period comprising a number of thin multiferroic layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).

    Article  ADS  Google Scholar 

  2. W. Eerenstein, N. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).

    Article  ADS  Google Scholar 

  3. R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).

    Article  ADS  Google Scholar 

  4. J. Scott and R. Blinc, J. Phys.-Condens. Matter 23, 299401 (2011).

    Article  Google Scholar 

  5. A. P. Pyatakov and A. K. Zvezdin, Phys.-Usp. 55(6), 557 (2012).

    Article  ADS  Google Scholar 

  6. A. Starkov, O. Pakhomov, and I. Starkov, Ferroelectrics 430, 108114 (2012).

    Article  Google Scholar 

  7. D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).

    Google Scholar 

  8. G. T. Rado, J. M. Ferrari, and W. G. Maisch, Phys. Rev. B: Condens. Matter 29, 4041 (1984).

    Article  ADS  Google Scholar 

  9. G. Nénert and T. Palstra, Phys. Rev. B: Condens. Matter 76, 024415 (2007).

    Article  ADS  Google Scholar 

  10. M. I. Bichurin, V. M. Petrov, D. A. Filippov, G. Srinivasan, and S. V. Nan, Magnetoelectric Effect in Composite Materials (Novgorod State University, Velikii Novgorod, 2005).

    Google Scholar 

  11. C.-W. Nan, M. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Article  ADS  Google Scholar 

  12. J. Ma, J. Hu, Z. Li, and C.-W. Nan, Adv. Mater. (Weinheim) 23, 1062 (2011).

    Article  Google Scholar 

  13. M. I. Bichurin and D. Viehland, Magnetoelectricity in Composites (Pan Stanford, Singapore, 2011).

    Google Scholar 

  14. E. Pan, J. Appl. Mech. 68, 608 (2001).

    Article  ADS  MATH  Google Scholar 

  15. L. Molotkov, J. Math. Sci. 62, 3103 (1992).

    Article  MathSciNet  Google Scholar 

  16. L. A. Molotkov, Investigation of the Wave Propagation in Porous and Fractured Media Based on the Effective Biot’s and Layered Medium Models (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  17. I. Starkov and A. Starkov, Int. J. Refrig. 37, 249 (2014).

    Article  Google Scholar 

  18. H. Wang, E. Pan, and W. Chen, J. Appl. Phys. 107, 093514 (2010).

    Article  ADS  Google Scholar 

  19. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985).

    Google Scholar 

  20. G. N. Dul’nev, Heat and Mass Transfer in Radio-Electronic Apparatus (Vysshaya Shkola, Moscow, 1984), p. 247.

    Google Scholar 

  21. A. S. Starkov and I. A. Starkov, J. Exp. Theor. Phys. 119(2), 258 (2014).

    Article  MathSciNet  Google Scholar 

  22. V. E. Nazaīkinskiī, V. E. Shatalov, and B. I. U. Sternin, Methods of Noncommutative Analysis: Theory and Applications (Walter de Gruyter, Berlin, 1996).

    Book  Google Scholar 

  23. M. SH. Birman and T. A. Suslina, Algebra Anal. 15, 1 (2003).

    MathSciNet  Google Scholar 

  24. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).

    Article  ADS  MATH  Google Scholar 

  25. F. Ramirez, P. R. Heyliger, and E. Pan, J. Sound Vibr. 292, 626 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Starkov.

Additional information

Original Russian Text © A.S. Starkov, I.A. Starkov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 980–989.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starkov, A.S., Starkov, I.A. Application of a generalized matrix averaging method for the calculation of the effective properties of thin multiferroic layers. J. Exp. Theor. Phys. 119, 861–869 (2014). https://doi.org/10.1134/S1063776114110120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110120

Keywords

Navigation