Skip to main content
Log in

On the accuracy of a one-dimensional approach to the solution of kinetic equations with velocity-dependent collision frequencies

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The solution of many problems in light-induced gas kinetics can be simplified significantly using quantum kinetic equations in the context of the so-called one-dimensional approximation, in which the initial equations are averaged over transverse (relative to the direction of radiation) velocities. The errors introduced in such an approach are usually assumed to be small; however, this has been confirmed quantitatively only on the basis of the simplest (two- and three-level) particle models. We analyze the accuracy of the one-dimensional approximation for multilevel particles quantitatively for the light-induced drift (LID) effect in cesium atoms in the atmosphere of inert buffer gases. It is shown that in the case of the so-called “normal” LID, one-dimensional kinetic equations can always be used instead of three-dimensional equations without a risk of losing some important fine details in the dependence of the drift velocity on the radiation frequency. In the case of anomalous LID, the error of the one-dimensional approximation is also insignificant, but it can be disregarded only in the case of light buffer particles. For comparable masses of resonant and buffer particles, the one-dimensional approximation may give a noticeable error in determination of drift velocity amplitudes; however, the positions of drift velocity zeros and extrema depending on radiation-frequency detuning can be described successfully. Results show that the error introduced by using the one-dimensional approximation for multilevel particles turns out to be more significant than for the simplest particle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Pine, J. Quant. Spectrosc. Radiat. Transfer 62, 397 (1999).

    Article  ADS  Google Scholar 

  2. P. Duggan, P. M. Sinclair, A. D. May, and J. R. Drummond, Phys. Rev. A: At., Mol., Opt. Phys. 51, 218 (1995).

    Article  ADS  Google Scholar 

  3. D. A. Shapiro, R. Ciurylo, R. Jaworski, and A. D. May, Can. J. Phys. 79, 1209 (2001).

    Article  ADS  Google Scholar 

  4. J. M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier, Amsterdam, The Netherlands, 2008).

    Google Scholar 

  5. G. J. van der Meer, J. Smeets, E. R. Eliel, P. L. Chapovsky, and L. J. F. Hermans, Phys. Rev. A: At., Mol., Opt. Phys. 47, 529 (1993).

    Article  ADS  Google Scholar 

  6. I. Kuscer, L. J. F. Hermans, P. L. Chapovsky, J. J. M. Beenakker, and G. J. van der Meer, J. Phys. B: At., Mol. Opt. Phys. 26, 2837 (1993).

    Article  ADS  Google Scholar 

  7. B. Nagels, P. L. Chapovsky, L. J. F. Hermans, G. J. van der Meer, and A. M. Shalagin, Phys. Rev. A: At., Mol., Opt. Phys. 53, 4305 (1996).

    Article  ADS  Google Scholar 

  8. F. Kh. Gel’mukhanov, A. I. Parkhomenko, T. I. Privalov, and A. M. Shalagin, J. Phys. B: At., Mol. Opt. Phys. 30, 1819 (1997).

    Article  ADS  Google Scholar 

  9. T. Privalov and A. Shalagin, Phys. Rev. A: At., Mol., Opt. Phys. 59, 4331 (1999).

    Article  ADS  Google Scholar 

  10. A. Brissaud and U. Frish, J. Math. Phys. 15, 524 (1974).

    Article  ADS  MATH  Google Scholar 

  11. A. I. Parkhomenko and A. M. Shalagin, J. Exp. Theor. Phys. 91(2), 245 (2000).

    Article  ADS  Google Scholar 

  12. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Non-linear Resonances in Spectra of Atoms and Molecules (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  13. S. G. Rautian and A. M. Shalagin, Kinetic Problems of Nonlinear Spectroscopy (North-Holland, Amsterdam, The Netherlands, 1991).

    Google Scholar 

  14. P. F. Liao, J. E. Bjorkholm, and P. R. Berman, Phys. Rev. A: At., Mol., Opt. Phys. 21, 1927 (1980).

    Article  ADS  Google Scholar 

  15. P. R. Berman, T. W. Mossberg, and S. R. Hartmann, Phys. Rev. A: At., Mol., Opt. Phys. 25, 2550 (1982).

    Article  ADS  Google Scholar 

  16. A. I. Parkhomenko and A. M. Shalagin, J. Exp. Theor. Phys. 93(4), 723 (2001).

    Article  ADS  Google Scholar 

  17. O. V. Belai, O. Y. Schwartz, and D. A. Shapiro, Phys. Rev. A: At., Mol., Opt. Phys. 76, 012513 (2007).

    Article  ADS  Google Scholar 

  18. V. P. Kochanov, J. Quant. Spectrosc. Radiat. Transfer 121, 105 (2013).

    Article  ADS  Google Scholar 

  19. W. Happer, Rev. Mod. Phys. 44, 169 (1972).

    Article  ADS  Google Scholar 

  20. E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference of Atomic States (Nauka, Moscow, 1991; Springer-Verlag, Berlin, 1993).

    Google Scholar 

  21. I. I. Sobel’man, An Introduction to the Theory of Atomic Spectra (Pergamon, London, 1972; Nauka, Moscow, 1977).

    Google Scholar 

  22. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).

    Google Scholar 

  23. L. V. Il’ichev and A. I. Parkhomenko, J. Exp. Theor. Phys. 85(3), 462 (1997).

    Article  ADS  Google Scholar 

  24. A. I. Parkhomenko, J. Exp. Theor. Phys. 89(5), 856 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Kh. Gel’mukhanov, L. V. Il’ichov, and A. M. Shalagin, Physica A (Amsterdam) 137, 502 (1986).

    Article  ADS  Google Scholar 

  26. NIST Atomic Spectra Database. http://www.nist.gov/pml/data/asd.cfm.

  27. F. Kh. Gel’mukhanov and A. I. Parkhomenko, J. Phys. B: At., Mol. Opt. Phys. 28, 33 (1995).

    Article  ADS  Google Scholar 

  28. J. Pascale and J. Vandeplanque, J. Chem. Phys. 60, 2278 (1974).

    Article  ADS  Google Scholar 

  29. A. I. Parkhomenko and A. M. Shalagin, Kvantovaya Elektron. (Moscow) 43, 162 (2013).

    Article  Google Scholar 

  30. N. Allard and J. Kielkopf, Rev. Mod. Phys. 54, 1103 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Parkhomenko.

Additional information

Original Russian Text © A.I. Parkhomenko, A.M. Shalagin, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 957–967.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomenko, A.I., Shalagin, A.M. On the accuracy of a one-dimensional approach to the solution of kinetic equations with velocity-dependent collision frequencies. J. Exp. Theor. Phys. 119, 838–847 (2014). https://doi.org/10.1134/S1063776114110089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110089

Keywords

Navigation