Skip to main content
Log in

On the nonlinear dissipative dynamics of weakly overdamped oscillators

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the motion of weakly overdamped linear oscillators. Weak overdamping of an oscillator is defined as a slight excess of the damping decrement over its natural frequency. Exact solutions are obtained for a certain relation between the decrement and the natural frequency and qualitatively different regimes of motion are analyzed. The threshold conditions corresponding to changes of regimes are established; one-component models with an arbitrary degree of nonlinearity are analyzed, and quadratic and cubic nonlinearities are considered in detail. If the nonlinearity in a multicomponent model is determined by a homogeneous function, transformations of the Kummer-Liouville type can be reduced to an autonomous system of second-order differential equations in the case when the relation between the decrement and the natural frequency has been established. Some integrable multicomponent models with quadratic and cubic nonlinearities are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981; Mir, Moscow, 1984).

    MATH  Google Scholar 

  2. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Nauka, Moscow, 1983; Springer-Verlag, Berlin, 1998).

    Google Scholar 

  3. A. A. Zaitsev and S. V. Sazonov, Biofizika 42, 521 (1997).

    Google Scholar 

  4. A. D. Dolgov, Ya. B. Zel’dovich, and M. V. Sazhin, Cosmology of the Early Universe (Moscow State University, Moscow, 1988) [in Russian].

    Google Scholar 

  5. A. D. Linde, Particle Physics and Inflationary Cosmology (CRC Press, Boca Raton, Florida, United States, 1990; Nauka, Moscow, 1990).

    Book  Google Scholar 

  6. L. M. Berkovich, Factorization and Transformations of Differential Equations (Regular and Chaotic Dynamics, Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  7. K. S. Govinder and P. G. L. Leach, J. Nonlinear Math. Phys. 14, 443 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. N. Euler, J. Nonlinear Math. Phys. 4, 310 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. N. Euler, W.-H. Steeb, and K. Cyrus, J. Phys. A: Math. Gen. 22, L195 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1967).

    Google Scholar 

  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965; Nauka, Moscow, 1979).

    Google Scholar 

  12. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Fizmatlit, Moscow, 1963; Academic, New York, 1980).

    Google Scholar 

  13. Yu. V. Brezhnev, A. A. Zaitsev, and S. V. Sazonov, Biophysics 56(2), 298 (2011).

    Article  Google Scholar 

  14. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis II (Cambridge University Press, Cambridge, 1948; Fizmatlit, Moscow, 1963).

    Google Scholar 

  15. M. Henon and C. Heiles, Astrophys. J. 69, 73 (1964).

    ADS  MathSciNet  Google Scholar 

  16. N. A. Kudryashov, Analytical Theory of Nonlinear Differential Equations (Institute of Computer Sciences, Moscow, 2004) [in Russian].

    Google Scholar 

  17. R. Conte and M. Museette, The Painlevé Handbook (Springer-Verlag, Berlin, 2008).

    MATH  Google Scholar 

  18. S. Baker, V. Z. Enolskii, and A. P. Fordy, Phys. Lett. A 201, 167 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras (Nauka, Moscow, 1990; Birkhäuser, Basel, Switzerland, 1990).

    Book  Google Scholar 

  20. D. Ivanenko and A. Sokolov, Classical Field Theory (Gostekhizdat, Moscow, 1951) [in Russian].

    Google Scholar 

  21. C. G. J. Jacobi, Vorlesungen über Dynamik (G. Reimer, Berlin, 1884; ONTI, Moscow, 1936) [in German and in Russian].

    Google Scholar 

  22. A. B. Borisov and I. S. Mamaev, Modern Methods of the Theory of Integrable Systems (Institute of Computer Sciences, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sazonov.

Additional information

Original Russian Text © Yu.V. Brezhnev, S.V. Sazonov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 5, pp. 1106–1121.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezhnev, Y.V., Sazonov, S.V. On the nonlinear dissipative dynamics of weakly overdamped oscillators. J. Exp. Theor. Phys. 119, 971–984 (2014). https://doi.org/10.1134/S1063776114110028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114110028

Keywords

Navigation