Skip to main content
Log in

Energy spectrum of the ensemble of weakly nonlinear gravity-capillary waves on a fluid surface

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider nonlinear gravity-capillary waves with the nonlinearity parameter ɛ ∼ 0.1–0.25. For this nonlinearity, time scale separation does not occur and the kinetic wave equation does not hold. An energy cascade in this case is built at the dynamic time scale (D-cascade) and is computed by the increment chain equation method first introduced in [15]. We for the first time compute an analytic expression for the energy spectrum of nonlinear gravity-capillary waves as an explicit function of the ratio of surface tension to the gravity acceleration. We show that its two limits—pure capillary and pure gravity waves on a fluid surface—coincide with the previously obtained results. We also discuss relations of the D-cascade model with a few known models used in the theory of nonlinear waves such as Zakharov’s equation, resonance of modes with nonlinear Stokes-corrected frequencies, and the Benjamin-Feir index. These connections are crucial in understanding and forecasting specifics of the energy transport in a variety of multicomponent wave dynamics, from oceanography to optics, from plasma physics to acoustics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hasselmann, J. Fluid Mech., 12, 481 (1962).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. V. E. Zakharov, and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 4, 500 (1967).

    Google Scholar 

  3. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer Series in Nonlinear Dynamics) (Springer-Verlag, New York, 1992).

    Book  MATH  Google Scholar 

  4. D. Snouck, M.-T. Westra, and W. van de Water, Phys. Fluids 21(2), 025102 (2009).

    Article  ADS  Google Scholar 

  5. L. Deike, M. Berhanu, and E. Falcon, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 066311 (2012).

    Article  Google Scholar 

  6. L. V. Abdurakhimov, Y. M. Brazhnikov, G. V. Kolmakov, and A. A. Levchenko, J. Phys.: Conf. Ser. 150, 032001 (2009).

    ADS  Google Scholar 

  7. P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, and A. Maurel, Phys. Rev. Lett. 107, 214503 (2011).

    Article  ADS  Google Scholar 

  8. M. Shats, H. Xia, and H. Punzmann, Phys. Rev. Lett. 108, 034502 (2012).

    Article  ADS  Google Scholar 

  9. A. C. Newell and B. Rumpf, Annu. Rev. Fluid Mech. 43, 59 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Kartashova, JETP Lett. 83, 341 (2006).

    Article  Google Scholar 

  11. E. Kartashova, EPL 87, 44001 (2009).

    Article  ADS  Google Scholar 

  12. E. Kartashova, Physica D 46, 43 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. E. Kartashova, Phys. Rev. Lett. 72, 2013 (1994).

    Article  ADS  Google Scholar 

  14. E. Kartashova, Nonlinear Resonance Analysis: Theory, Computation, Applications (Cambridge University Press, Cambridge, 2010).

    Book  Google Scholar 

  15. E. Kartashova, EPL 97, 30004 (2012).

    Article  ADS  Google Scholar 

  16. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).

    Article  MATH  ADS  Google Scholar 

  17. K. B. Dysthe, Proc. R. Soc. London, Ser. A 369, 105 (1979).

    Article  MATH  ADS  Google Scholar 

  18. S. J. Hogan, Proc. R. Soc. London, Ser. A 402, 359 (1985).

    Article  MATH  ADS  Google Scholar 

  19. O. M. Phillips, J. Fluid Mech. 4, 426 (1958).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. E. Kartashova, EPL 102, 44005 (2013).

    Article  ADS  Google Scholar 

  21. E. Kartashova, PRE 86, 041130 (2012).

    Article  ADS  Google Scholar 

  22. J. C. Bronski, M. A. Johnson, and T. Kapitula, Proc. R. Soc. Edinburgh: Sect. A 141, 1141 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. A. Johnson, SIAM J. Math. Anal. 45, 2597 (2013).

    Article  MathSciNet  Google Scholar 

  24. M. A. Malkov, P. H. Diamond, and A. I. Smolyakov, Phys. Plasmas 8(5), 1553 (2001).

    Article  ADS  Google Scholar 

  25. S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Springer and Higher Education, Berlin, 2012).

    Book  MATH  Google Scholar 

  26. Z. Liu and S.-J. Liao, J. Fluid Mech. 742, 664 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Slunyaev, I. Didenkulova, and E. Pelinovsky, Contemp. Phys. 52, 571 (2011).

    Article  ADS  Google Scholar 

  28. F. Baronio, M. Conforti, A. Degasperis, and S. Lombardo, Phys. Rev. Lett. 111, 114101 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tobisch.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobisch, E. Energy spectrum of the ensemble of weakly nonlinear gravity-capillary waves on a fluid surface. J. Exp. Theor. Phys. 119, 359–365 (2014). https://doi.org/10.1134/S1063776114080184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114080184

Keywords

Navigation